The Consultative Committee for Space Data Systems

=CSDS

[[]
CCSDS Historical Document
This document’s Historical status indicates that it is no longer current. It
has either been replaced by a newer issue or withdrawn because it was
deemed obsolete. Current CCSDS publications are maintained at the

http://public.ccsds.org/publications/

following location:

Consultative
Committee for
Space Data Systems

RECOMMENDATION FOR SPACE
DATA SYSTEM STANDARDS

PARAMETER VALUE
LANGUAGE
SPECIFICATION
(CCSDO0006)

CCSDS 641.0-B-1
BLUE BOOK

May 1992

o\ BRI
7T @Y AY &

et Gy Yol B BN

! ™ 9 ' ™

- 4‘.‘ 1 _ Ml \‘ |

i
-4
4

g/ﬂ/ﬂ/ﬂ
Saw

CCSDS Recommendation: Parameter Value Language Specification

AUTHORITY
Issue: Blue Book, Issue 1
Date: May 1992
Location: CCSDS Panel 2 Workshop
Oberpfaffenhofen, Germany
May 1992

This Recommendation reflects the consensus technical agreement of the following member Agencies
of the Consultative Committee for Space Data Systems (CCSDS):

- British National Space Centre (BNSC) / United Kingdom

- Canadian Space Agency (CSA) / Canada

- Centre National D’Etudes Spatiales (CNES) / France

- Deutsche Forschungsanstalt fur Luft und Raumfahrt (DLR) / FRG
- European Space Agency (ESA) / Europe

- Instituto de Pesquisas Espaciais (INPE) / Brazil

- National Aeronautics and Space Administration (NASA) / USA

- National Space Development Agency of Japan (NASDA) / Japan

The following observer Agencies also concur with this Recommendation:

- Department of Communication/Communications Research Centre (DOC/CRC)
/ Canada
- Institute for Space Astronautics and Science (ISAS) / Japan

This Recommendation is published and maintained by:

CCSDS Secretariat

Communications and Data Systems Division, (Code-OS)
National Aeronautics and Space Administration
Washington, DC 20546, USA

Issue 1 i May 1992

CCSDS Recommendation: Parameter Value Language Specification

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established
by the management of member space Agencies. The Committee meets periodically to address data
systems problems that are common to all participants, and to formulate sound technical solutions to
these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of
Committee actions are termed Recommendations and are not considered binding on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS Plenary body. Agency
endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the
following understandings:

- Whenever an Agency establishes a CCSDS-related Standard, this Standard will be in accord
with the relevant Recommendation. Establishing such a Standard does not preclude other
provisions which an Agency may develop.

- Whenever an Agency establishes a CCSDS-related Standard, the Agency will provide other
CCSDS member Agencies with the following information:

-- The Standard itself.
-- The anticipated date of initial operational capability.
-- The anticipated duration of operational service.

- Specific service arrangements shall be made via memoranda of agreement. Neither this
Recommendation nor any ensuing Standard is a substitute for a memorandum of agreement.

No later than five years from the date of its issuance, this Recommendation will be reviewed by the
CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect
the impact of new technologies, new requirements, or new directions; or, (3) be retired or canceled.

Issue 1 ii May 1992

CCSDS Recommendation: Parameter Value Language Specification

FOREWORD

This document is a technical Recommendation for the specification of the Parameter Value Language
(PVL) and has been prepared by the Consultative Committee for Space Data Systems (CCSDS).

This Recommendation defines the Parameter Value Language which provides a human readable,
machine processable language for naming and expressing data values. It allows implementing
organizations within each Agency to proceed coherently with the development of compatibly derived
Standards for space data systems and widely dispersed data users that are within their cognizance.
Derived Agency Standards may implement only a subset of the optional features allowed by the
Recommendation and may incorporate features not addressed by the Recommendation.

Through the process of normal evolution, it is expected that expansion, deletion, or modification to this
document may occur. This Recommendation is therefore subject to CCSDS document management
and change control procedures which are defined in Reference [1].

Questions relative to the contents or status of this document should be addressed to the CCSDS
Secretariat.

Issue 1 iii May 1992

CCSDS Recommendation: Parameter Value Language Specification

DOCUMENT CONTROL

Document Title Date Status/
Remarks
CCSDS 641.0-B-1 Recommendation for Space May 1992 Current
Data System Standards: Issue
Parameter Value Language,
Issue 1

Issue 1 iv May 1992

CCSDS Recommendation: Parameter Value Language Specification

CONTENTS
Sections
REFERENCES vii
L INTRODUCTION .. e e e e e e e e e 1
L1 PUrpose and SCOPE . ..ottt e e 1
1.2 Applicability 1
1.3 Recommended Approach to Reading the Document 1
1.4 Character Set Definitions 3
1.4.1 PVL Character Set e 3
1.4.1.1 White Space Character Set 3
1.4.1.2 Reserved Character Set 3
1.4.1.3 Unrestricted Character Set 4
1.42 CommeENT 4
2 OVERVIEW OF THE LANGUAGE e e e 5
2.1 Assignment Statement e 6
2.1.1 Parameter Name 7
2.1.2Value ... 7
2121SimpleValue 8
212101 NUMENIC .ot e e e 8
21212StriNg . ..o 10
21213 Date/lTimeValue 11
2.1.2.2 St .. 13
2.1.2.3 SEAUENCE oo e e 13
2.1.24 Units EXPression 14
2.2 Aggregation BIoCK e 15
2.2.1 Begin Aggregation Statement o 15
2.2.2 End Aggregation Statement o oo 16
2.2.3 Aggregation Block Construction Rules 17
2.3 End Statement 18
3 PARAMETER VALUE LANGUAGE FORMAL SYNTAX SPECIFICATION 19
3.1 Formal Specification e 19
3.2 Reserved Keywords 42
ANNEX A -- ACRONYMS AND GLOSSARY ... e 43
ANNEX B -- CHARACTER DEFINITIONS e e i 46
IN D EX o 49

Issue 1 \Y May 1992

CCSDS Recommendation: Parameter Value Language Specification

Figures

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6

Example Structure Diagram 2
PVL Module Contents Syntax Diagramc. ... 5

White Space/Comment Syntax Diagram 5
Assignment Statement Syntax Diagram 6

Statement Delimiter Syntax Diagram i 6

Value Syntax Diagram 7

Simple Value Syntax Diagram 8

Figure 2-7 String Type Syntax Diagram i 10
Figure 2-8 Date Syntax Diagram 11
Figure 2-9 Time Syntax Diagram i e e e e 12
Figure 2-10 Date/Time Syntax Diagram 12
Figure 2-11 Set Syntax Diagram i e e e e 13
Figure 2-12 Sequence Syntax Diagram e 13
Figure 2-13 Units Expression Syntax Diagram 14
Figure 2-14 Units Value Syntax Diagram 14
Figure 2-15 Aggregation Block Syntax Diagram, 15
Figure 2-16 Aggregation Begin Statement Syntax Diagram 16
Figure 2-17 End Aggregation Statement Syntax Diagram 16
Figure 2-18 End Statement Syntax Diagram 18
Tables

Table 1-1 Reserved Character Set e 3
Table 1-2 Unrestricted Character Set e 4
Issue 1 Vi May 1992

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

Issue 1

CCSDS Recommendation: Parameter Value Language Specification

REFERENCES

"Procedures Manual for the Consultative Committee for Space Data Systems"”, CCSDS A00.0-
Y-4, Yellow Book, Issue 4, Consultative Committee for Space Data Systems, September 1990.

ISO 646-1991(E) Information Technology - ISO 7-bit coded character set for information
interchange, Third Edition, 1991-12-15.

ISO 8859-1-1987 Information Processing - 8-bit Single-byte coded graphic character set, Part 1:
Latin Alphabet no.1.

ISO 6093-1985(E) Information Processing - Representation of numerical values in character
strings for information interchange, First Edition, 1985-11-01.

ISO/IEC 8824:1990(E) Information Technology - Open System Interconnection - Specification
of Abstract Syntax Notation One (ASN.1), Second Edition, 1990-12-15.

Steedman, Douglas - Abstract Syntax Notation One (ASN.1) the Tutorial Reference,
Technology Appraisals, London 1990.

"Report Concerning Space Data Systems: Parameter Value Language -- A Tutorial", CCSDS
641.0-G-1, Consultative Committee for Space Data Systems, Green Book, Issue 1, May 1992
or later.

"Recommendation for Space Data Systems: Time Code Formats", CCSDS 301.0-B-2,
Consultative Committee for Space Data Systems, Blue Book, Issue 2, April 1990 or later.

vii May 1992

CCSDS HISTORICAL DOCUMENT

CCSDS Recommendation: Parameter Value Language Specification

This page intentionally left blank.

Issue 1 viii

CCSDS HISTORICAL DOCUMENT

May 1992

CCSDS Recommendation: Parameter Value Language Specification

1 INTRODUCTION
1.1 Purpose and Scope

The purpose of this document is to establish a common Recommendation for the specification of a
standard keyword/value type language for naming and expressing data values in order to interchange
data in a more uniform fashion within and among Agencies participating in the Consultative
Committee for Space Data Systems (CCSDS). This Recommendation provides an overview and formal
syntax specification of the Parameter Value Language (PVL).

1.2 Applicability
The specifications in this document are to be invoked through the normal standards program of each
member Agency and are applicable to all space-related science and engineering data exchanges where
a keyword/value language is desired.
1.3 Recommended Approach to Reading the Document
A proper understanding of this Recommendation requires familiarity with the terminology used in this
document. Terms are defined as they are introduced in the text. Individuals who are accessing the
document out of sequence may wish to refer to Annex A, which presents a complete summary of the
acronyms and the terminology used in this document. Reference [7] is a tutorial which describes the
requirements, the techniques used to fulfill the requirements, usage guidelines and parser
implementation guidelines for PVL. Some readers may find it useful to read Reference [7] prior to
reading this document.
The document is structured as follows:
- Chapter 2 describes the PVL language, using English text and syntax diagrams.
- Chapter 3 provides the formal syntax specification written in Abstract Syntax Notation One
(ASN.1, see Reference [5]). The comments in the ASN.1 are part of the specification. This is
the ruling form of the specification.

- Annex A contains acronyms and a glossary of terms used in this document.

- Annex B lists the ASCII codes for the characters used in PVL.

Issue 1 1 May 1992

CCSDS Recommendation: Parameter Value Language Specification

This document uses syntax diagrams to illustrate the syntax of the various language constructs.
Components of the construct are called elements, are presented in boxes or circles and are connected
by directional lines. The following conventions are used:

- Elements that are presented in uppercase and lowercase letters in rectangles are defined
elsewhere in the document.

- Elements that are presented in a circle as a single bold character are delimiters or reserved
characters.
- Elements that are presented in lowercase letters in a rectangle with rounded corners are basic

items not further defined in the syntax diagrams of this document.

- Elements that are presented in bold characters in a rectangle with rounded corners are
keywords.
- The item named on the left of the ::= symbol is the item being defined.

- The diagram on the right of the ::= symbol is the definition.

- A vertical branch represents a choice.
- A repetition is indicated by a loop back covering the object to be repeated.
- The termination of each structure is represented by the O symbol.
For example:
<
> (ItemB >
A Y

:::;> > > > ltemD)>—"->o0

Figure 1-1 Example Structure Diagram

In this example Item A is defined as first a choice between Items B or C or nothing, where Item B itself may be
repeated any number of times. Then this structure is followed by one Item D. Once this structure is built up, it may
then all be repeated any number of times, until the choice to pass ontodfambol is taken. Of course if any items

on the right (B, C or D) contain an Item A, the definition is recursive. Recursive structure definitions are permitted
in this Recommendation.

Issue 1 2 May 1992

CCSDS Recommendation: Parameter Value Language Specification

1.4 Character Set Definitions

The following sections contain character set definitions used in this specification. A clear understanding of these
terms is necessary to understand this Recommendation.

1.4.1 PVL Character Set

The PVL Character Set is a subset of the ASCII character set. The specific subset is defined in Annex B. The PVL
Character Set is split into three subsets: white space characters, reserved characters, and unrestricted characters.

1.4.1.1 White Space Character Set

The White Space Character Set is defined as the following characters: space, carriage return, line feed, horizontal
tab, vertical tab, and form feed. A sequence of one or more or these characters is known as White Space. The
semantic effect of White Space between syntactic elements is not affected by its length.

1.4.1.2 Reserved Character Set

The Reserved Character Set is a collection of characters reserved for specific purposes or future use. The Reserved
Character Set is defined in Table 1-1.

Symbol Name Symbol Name Symbol Name

& Ampersand [Left Square Bracket % Percent Sign

< Less-Than Sign] Right Square Bracket + Plus Sign
(Open Angle Bracket)

> Greater-Than Sign = Equal Sign Quotation Mark
(Close Angle Bracket)
Apostrophe ! Exclamation Point Semicolon

{ Left Curly Bracket # Number Sign, ~ Tilde
(Left Brace) (Hash)

} Right Curly Bracket, (Left Parenthesis Vertical Line
(Right Brace)
Comma) Right Parenthesis

Table 1-1 Reserved Character Set
Issue 1 3 May 1992

CCSDS Recommendation: Parameter Value Language Specification

1.4.1.3 Unrestricted Character Set

The Unrestricted Character Set is a collection of PVL characters which are not reserved or used as white space. The
Unrestricted Character Set is defined as the alphanumeric characteizsét-¢, and0-9) and the non-alphanumeric
characters in Table 1-2.

Symbol Name Symbol Name Symbol Name

* Asterisk $ Dollar Sign ? Question Mark

n Circumflex Accent, ‘ Grave Accent / Solidus,
(Caret) (Forward Slash)
Colon . Full Stop, \ Reverse Solidus,

(Period) (Backward Slash)
@ Commercial At - Hyphen-Minus Sign _ Low Line,
(Underscore)

Table 1-2 Unrestricted Character Set

1.4.2 Comment

A comment consists of zero or more PVL characters enclosed between a pair of comment delimiters. The begin
comment delimiter is the forward slash-asterisk sequeficg (The end comment delimiter is the asterisk-forward
slash sequenceé/(). Comments are treated the same as white space when occurring between syntactic elements.
Comments shall not be embedded within other comments.

Issue 1 4 May 1992

CCSDS Recommendation: Parameter Value Language Specification

2 OVERVIEW OF THE LANGUAGE

PVL provides a specific syntax for the association of values with parameters. A PVL Module consists of a sequence
of zero or more statements. These statements are found within an externally provided sequence of octets. Some or
all of these statements can be aggregated into named blocks. Layout (i.e., the use of white space to promote human
readability) is not significant for the interpretation of these statements.

The PVL Module is delimited by either the end of the provided octet sequence or by the use of an optional end
statement (see Section 2.3).

Figure 2-1 contains a syntax diagram for the contents of the PVL Module; it references Figure 2-2 which defines
WSC to represent a possibly empty collection of white space characters and/or comments. When this construct
appears in syntax diagrams, it represents the capability of using optional white space and/or comments between
syntactic elements for readability.

<
<

> Assignment Statement
PVL Module — N N N -~
Contents - - | WSC| ~ . >0
> Aggregation Block End Statement

Figure 2-1 PVL Module Contents Syntax Diagram

/V
> e space >
Y
wsc |..= > > >0
o A

o>

Figure 2-2 White Space/Comment Syntax Diagram

An assignment statement has the following general form:

Parameter = Value

Issue 1 5 May 1992

CCSDS Recommendation: Parameter Value Language Specification
An aggregation block has the following general form:
Begin Aggregation Statement
A collection of assignment statements and/or aggregation blocks
End Aggregation Statement
2.1 Assignment Statement

An Assignment Statement is used to assign a value to a parameter name. Within the Assignment Statement, White
Spaces and comments are ignored between syntactic elements, except where required for statement delimitation.

The Assignment Statement has the following format (the square brackets indicate that the semicolon is optional):
parameter name = value [;]

Figure 2-3 contains a syntax diagram for the PVL assignment statement.

Assignment |.. — Parameter - ° - Statement
Statement |** Name wse wse Value Delimiter °

Figure 2-3 Assignment Statement Syntax Diagram

Figure 2-4 contains a syntax diagram illustrating the options for Statement Delimiter.

Y
> commen >)

Statement Delimiter | ..——>— WSC|—>— >0

Y
\

end of provided
octets for
PVL module

Figure 2-4 Statement Delimiter Syntax Diagram

Statements are separated by the use of a statement delimiter, which follows the value. Within this context, a
statement delimiter is defined as one of the following:

. an explicit delimiter character}, which can be preceded by white space characters and/or comments;
. in the absence of the explicit delimiter character, a set of one or more white space characters or comments;
. the end of the externally provided octet set.

Issue 1 6 May 1992

CCSDS Recommendation: Parameter Value Language Specification

Statement delimitation in the absence of the explicit delimiter character is the only time when white space or
comments have semantic meaning in PVL.

2.1.1 Parameter Name

The Parameter Name provides a way to reference the value assigned in the assignment statement. Parameter names
consist of a sequence of Unrestricted Characters.

A Parameter Name must not contain a comment delimiter sequéncer ¢/) and it shall not conform to numeric
encoding rules (see Section 2.1.2.1.1) or date/time encoding rules (see Section 2.1.2.1.3). A Parameter Name
terminates with the character immediately prior to a Reserved Character, White Space Character or the beginning
of a comment.

There are seven reserved keywords in PVL:

BEGIN_GROUP
BEGIN_OBJECT
END
END_GROUP
END_OBJECT
GROUP
OBJECT

Reserved keywords are not permitted as Parameter Names within an assignment statement.
2.1.2 Value

The Value in an assignment statement can be a simple value, a set or a sequence. Any simple value, set or sequence
can optionally be followed by a units expression.

Figure 2-5 contains a syntax diagram for Value.

—> | Simple Value
Value |..=—> Set > WSC > Units Expression >0
> Sequence >

Figure 2-5 Value Syntax Diagram

Issue 1 7 May 1992

CCSDS Recommendation: Parameter Value Language Specification
2.1.2.1 Simple Value
A Simple Value can be a numeric, string, or date/time value.

Figure 2-6 contains a syntax diagram for a Simple Value.

—>— Date/Time

Y
Y
o

Simple Value | «+— —> Numeric

> String

Figure 2-6 Simple Value Syntax Diagram

2.1.2.1.1 Numeric

A Numeric is a sequence of Unrestricted Characters that conform to encoding rules that permit its interpretation as
a number. Numerics can be either decimal numbers or one of three non-decimal integer encodings: binary, octal,
and hexadecimal.

2.1.2.1.1.1 Decimal Numbers

Decimal Numbers follow the three numerical representations (integer, floating point, exponential) specified in ISO
6093 (see Reference [4]) for decimal representations, with the exception that cosiaall not be used as a
decimal point.

2.1.2.1.1.1.1 Integer

Integer numbers correspond to the First Numerical Representation (NR1) in ISO 6093. Each number is represented
by at least one decimal digit. The number can be optionally prefixed by a sign symbot -(). An unsigned
number will be taken as positive.

Examples: 125
+211109
-79

2.1.2.1.1.1.2 Floating Point

Floating Point numbers correspond to the Second Numerical Representation (NR2) in ISO 6093. Each number is
represented by at least one decimal digit and a decimal point. The decimal point is defined to be the full. stop (

The decimal point can appear anywhere within the sequence. The decimal point is used to separate the integer part
of the real number from the fractional part, at the point where the decimal point is placed. The number can be
optionally prefixed by a sign symbot-(or -). An unsigned number will be taken as positive.

Issue 1 8 May 1992

CCSDS Recommendation: Parameter Value Language Specification

Examples: 69.35
+12456.345
-0.23456
.05
-7.

2.1.2.1.1.1.3 Exponential

Exponential numbers correspond to the Third Numerical Representation (NR3) in ISO 6093. Each number is
represented by two sequences of decimal digits called the significand (i.e., mantissa) and exponent, separated by the
ASCII charactelE or e. The value of the number equals the value of the significand multiplied by the result of 10
raised to the power represented by the exponent. The significand can be optionally prefixed by the signssymbol (

or -). The exponent is an optionally signed integer. If either the significand or exponent is unsigned, it will be
taken as positive.

Examples: -2.345678E12
1.567E-10
+4.99E+3

2.1.2.1.1.2 Non-decimal Representations

Integer values can also be represented in bases other than base 10. Non-decimal integers can have a radix of
2 (binary), 8 (octal), or16 (hexadecimal). The non-decimal format begins with an optional sigor ¢) and the

radix (in decimal notation), followed by the non-decimal form enclosed within a pair of number #yndf(the

optional leading sign has been omitted, then the number will be taken as positive. The non-decimal form itself is
interpreted as a positive, uncomplemented integer.

A non-decimal integer has the following form

[sign]radix¢tnon_decimal_integér

where the radix denotes whether the number is binary, octal, or hexadecimal.
NOTE: Any of the above forms of numerics are stored internally by PVL support software in a format that may be
unknown to the user. Therefore, if a particular string of bits is required or must be conserved, for instance, as a
mask or flag, then this should be expressed as a quoted stringl\§K = "01110101"; and translated to a
bit pattern by the application.

2.1.2.1.1.2.1 Binary Numbers

Binary Numbers are represented with a radix valu@ ofThe non-decimal portion is a sequence of the characters
Oorl.

Example: 2#0101# is equal to the decimal value 5.
2.1.2.1.1.2.2 Octal Numbers
Octal Numbers are represented with a radix valu8.ofThe non-decimal portion is a sequence of characters from

the following set:
0,1,2,3,4,5,6,7.

Issue 1 9 May 1992

CCSDS Recommendation: Parameter Value Language Specification
Example: 8#0107# is equal to decimal value 71.
2.1.2.1.1.2.3 Hexadecimal Numbers
Hexadecimal Numbers are represented with a radix valdé ofThe non-decimal portion is a sequence of characters
from the following set:
0,1,2,3,4,5,6,7,8,9,AB,CDEF,ab,c,de,f
Lower case letters are equivalent to their upper case counterparts.
Example: 16#100A# is equal to the decimal value 4106.

2.1.2.1.2 String

A String is a sequence of PVL characters that conforms to the requirements for either a quoted string or an unquoted
string. Figure 2-7 contains a syntax diagram illustrating the two types of String.

> autedsting) >

String |11 = ——>—— —>0

L—>——(unquoted string)—>—

Figure 2-7 String Type Syntax Diagram

2.1.2.1.2.1 Quoted String

A Quoted String consists of zero or more PVL characters enclosed between matching quote delimiters. The quote
string delimiters are the quotation mark)(or the apostrophé {.

NOTE 1: A quote string delimiter character can be embedded within a string by the use of the quote string delimiter
not used to enclose the string itself. (e.g. "John said 'GOODBYE' and then left" or "John said "GOODBYE" and
then left’).

NOTE 2: If a string is to contain any of the Reserved Characters, White Space Characters, or the comment
delimiter sequences, it must be a quoted string rather than an unquoted string. A string must also be quoted if it
conforms to the encoding rules for either numeric or date/time.

NOTE 3: The above definition allows for null length (i.e., empty) strings. A null length string may have meaning
and therefore is permitted.

Issue 1 10 May 1992

CCSDS Recommendation: Parameter Value Language Specification
2.1.2.1.2.2 Unquoted String
An Unquoted String is a sequence of one or more Unrestricted Characters.

An Unquoted String shall not contain the begin comment delimiter) or end comment delimiter(), nor shall
it conform to numeric or date/time encoding rules. An Unquoted String terminates with the character immediately
prior to a White Space Character, a Reserved Character, the beginning of a comment, or the end of the PVL Module.

2.1.2.1.3 Date/Time Value

The date/time value is a strict subset of the CCSDS ASCII Time Code recommendation (Reference [8]), in which
all time is represented in Universal Coordinated Time, (i.e. Greenwich Mean Time). The time construct consists of
a combination of date and time constructs.

The date construct has two forms:

YYYY-DDD
where
YYYY is year (0001 to 9999)
DDD is day of year (001 to 365, 366 for leap year)

and

YYYY-MM-DD
where
YYYY is four digit year (0001 to 9999)
MM is month (01 to 12)
DD is day of month(01 to 28, 29, 30 or 31)

Note that each field has a specified width, leading zeros must be included if needed to assure field width.
Figure 2-8 contains a syntax diagram of the date format.

> day of year) ——>——
Y

Date |"*'= —>0
= year >
(Lyear) {
month %@ day of month

Figure 2-8 Date Syntax Diagram

Examples: 2000-012 is the twelfth day of the year 2000
1995-06-08 is June 8, 1995
1978-04-30 is April 30, 1978

Issue 1 11 May 1992

CCSDS Recommendation: Parameter Value Language Specification

The time construct has the form

hh:mm[:ss[.d...d]]
where
hh is hours (00 to 23)
mm is minutes (00 to 59)
ss is seconds (00 to 60, 60 is to accommodate leap seconds).
d...d is fractional seconds represented by 1 or more digits.

Figure 2-9 contains a syntax diagram for the time format.

Time |':= T@ ‘ fractional seconds) >0
Ny,
7

Ny,
>

Figure 2-9 Time Syntax Diagram

Examples: 00:00:00.0

12:01:56
23:01

The complete time construct consists of date, followed by the sepdrdiddiowed by the time construct, all of this
can be optionally followed by the charact&ras a terminator. Separate time and date values can also be used.
Figure 2-10 contains a syntax diagram of the date/time format.

N,
7

Date/Time |..—— Date @T Time @ —>0
~ >

>

Figure 2-10 Date/Time Syntax Diagram

Examples: 1991-12-22T22:03:12.01Z
2001-001T12:13
1998-02-12T00:00:01.00
1995-360T714:02:13.0123456Z

Issue 1 12 May 1992

CCSDS Recommendation: Parameter Value Language Specification

2.1.2.2 Set

A Set is a delimited collection of values in which the order of the values is not significant and need not be
maintained. A Set can contain zero or more values. If a Set contains two or more values, they are separated by
commas. The beginning of a Set is indicated by an left curly bragRetafd the end by a right curly brackét)(

NOTE: The above definition allows for empty sets. An empty set may have meaning and is therefore permitted.

Figure 2-11 contains a syntax diagram for the Set format.

< ' <
\/
Y A
Set =-—> /~_{\ WSC|—>— Value WSC > Q—)o
Y A
Ny, Ny,
> WSC

Figure 2-11 Set Syntax Diagram

2.1.2.3 Sequence

A Sequence is a delimited collection of values in which the order of the values is significant. A Sequence can
contain zero or more values. If two or more values are contained in a Sequence, they are separated by commas.
The beginning of a Sequence is indicated by an left parenthgsiand the end by a right parenthes)9.(

NOTE: The above definition allows for empty sequences. An empty sequence may have meaning and is therefore
permitted.

Figure 2-12 contains a syntax diagram for the Sequence format.

()

Sequence| ..

N,
>

(O

Figure 2-12 Sequence Syntax Diagram

Y

wsC

N,
>

<
N

N

Value

WSC

A

WSC

Y

L

N,
>

May 1992

CCSDS Recommendation: Parameter Value Language Specification
2.1.2.4 Units Expression

Any simple value, set or sequence can optionally be followed by a Units Expression. The Units Expression consists
of a Units Value contained between an open angle braeletr{d a close angle bracke)(The Units Value begins

with the first non-white space character after the open angle bracket and ends with the last non-white space character
before the close angle bracket. A Units Value can contain any PVL character other than the angle brackets
themselves.

Figure 2-13 contains a syntax diagram for the Units Expression format. Note that white space is a collection of one
or more white space characters.

Units Expression|. .= +® > (white spac@»ﬂ Units Value ?@hite spac@%@%o
> >

Figure 2-13 Units Expression Syntax Diagram

Figure 2-14 contains a syntax diagram for the Units Value format, in which a units character is any PVL character
other than the open angle bracke),(close angle bracket], or white space character.

Units Value = \units character > UT units character 0
e
>

Figure 2-14 Units Value Syntax Diagram

<
N

units character

Issue 1 14 May 1992

CCSDS Recommendation: Parameter Value Language Specification

2.2 Aggregation Block

The Aggregation Block is a named collection of assignment statements and/or other aggregation blocks. The
Aggregation Block is identified by a block name. The start of the block is indicated by a begin aggregation
statement and is terminated by an end aggregation statement. Figure 2-15 contains a syntax diagram for the
Aggregation Block format.

<
~

Assignment
Statement
- begin end
Aggéﬁ)%?(“o” . aggregation wsc *% aggregation —>0
statement statement
Aggregation
block

Figure 2-15 Aggregation Block Syntax Diagram

Aggregations are commonly referred to as groups or objects. These two keyword forms for aggregation statements
are permitted to allow for the stylistic preferences. No semantic differentiation between the two is made by PVL.
Applications are free to assign such differentiation if required.

2.2.1 Begin Aggregation Statement

The Begin Aggregation Statement is parallel in construction to the assignment statement. The Begin Aggregation
Statement has the following format (the square brackets indicate that the semicolon is optional):

begin-aggregation keyword = block name [;]
The begin-aggregation keywords @&GIN_GROURNdBEGIN_OBJECTand are matched with statements that

useEND_GROUBNdEND_OBJECTespectively. The keywor@®@BJECTis a synonym foBEGIN_OBJECTand
the keywordGROURs a synonym foBEGIN_GROUP The form of the block name is identical to parameter name.

NOTE: These synonyms are allowed for historical compatibility with several existing keyword languages.

Issue 1 15 May 1992

CCSDS Recommendation: Parameter Value Language Specification

Figure 2-16 contains a syntax diagram of the begin aggregation statement formats.

BEGIN_OBJECT

Begin Aggregation
Statement for |..= >— Statement 50
i Delimiter
Obiject
OBJECT
BEGIN_GROUP
Begin Aggregation
= Statement
Statement for |, ,— > A N
Group

Figure 2-16 Aggregation Begin Statement Syntax Diagram

2.2.2 End Aggregation Statement

The End Aggregation Statement is identified by the end-aggregation keyword. The full form of the end aggregation
statement follows the same construction rules as an assignment statement; it has the following format (the square
brackets indicate that the semicolon is optional):

end-aggregation keyword = block name [;]

An abbreviated form of the end aggregation statement is allowed as a convenience to the user. The abbreviated end
aggregation statement has the following format:

end-aggregation keyword [;]

The defined end-aggregation keywords BND GROUBNdEND_OBJECT Figure 2-17 contains a syntax diagram
for the end aggregation statement.

End Aggregation

Statement for |1:= > END_OBJECT r@%@ *@ ‘Deiimier >°
Object

Y

End Aggregation

Statement for |::=->{ END_GROUP)> wsc e @ SSitlfr:]‘i‘teeT»o

Group

Y

N,
7

Figure 2-17 End Aggregation Statement Syntax Diagram

NOTE: The preferred form of the aggregation end statement is the full form, which includes the block name.

Issue 1 16 May 1992

CCSDS Recommendation: Parameter Value Language Specification

2.2.3 Aggregation Block Construction Rules
The end aggregation statement must be paired with an begin aggregation statement. In other words, an Aggregation

Block which starts with 8EGIN_GROURtatement must end with &ND_GROUBtatement. If a block name is
used in the end aggregation statement, it must match the name used in the matching begin aggregation statement.

Issue 1 17 May 1992

CCSDS Recommendation: Parameter Value Language Specification

2.3 End Statement

The End Statement is a special type of statement used to delimit a PVL Module prior to the end of the externally
provided octet sequence. Figure 2-18 illustrates the syntax

(e)

A

o
/

o

end of provided
octets for
PVL module

Figure 2-18 End Statement Syntax Diagram

The End Statement is delimited by one of the following: a semicolon; the first white space character; the end of a
comment; or the end of the provided octet space.

NOTE: The statement delimitation of the End statement is more restrictive than for other statements since the
remaining octets in the sequence which may include white space, comments, or semi-colons, as well as any other
character, may have significance to the application.

There shall be at most one End statement in a PVL Module, and if present it shall be the last statement of the PVL
Module.

Issue 1 18 May 1992

CCSDS Recommendation: Parameter Value Language Specification
3 PARAMETER VALUE LANGUAGE FORMAL SYNTAX SPECIFICATION

Precedence: In the case of ambiguity of the preceding sections or disagreement with this formal specification, this
formal specification shall take precedence. This specification is presented in Abstract Syntax Notation One (ASN.1,
see Reference[5]). The comments in the ASN.1 are also part of the specification. Readers unfamiliar with ASN.1
may wish to consult an ASN.1 tutorial such as Reference [6].

The ASN.1 specification is organized into groupings based on major constructs. Each group begins on a new page
with comment block immediately followed by the definition of the construct with its components in alphabetical
order. Components used by more than one major construct are listed in the common language elements group at
the end of the specification. Common language elements contain components such as statement delimiter, separator,
the combination of white space and comment (WSC), and character sets.

The construct sections are found on the following pages:

PVL Module Contents. 20
Aggregation Block 21
Assignment Statement. 24
Comment. 25
Date/Time 26
Numeric Values 32
Sequence. 35
Set ... 36
String ... 37
Units Expression 39

Common Language Elements. . 40

NOTE: The term IA5String as used in this ASN.1 refers to the International ASCIl Character Set #5.

3.1 Formal Specification

PVLModule DEFINITIONS := BEGIN

Issue 1 19 May 1992

CCSDS Recommendation: Parameter Value Language Specification

kkkkkkkkkkkkkkkkkkkkhhkkhkkkhkkkkkkhhkkkhkkkkkkkkkhkkkkk

__ kkkokk

-- *k - PVL MODULE CONTENTS

Kkkkk

kkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkhhkkkhkkkkkkkkkkhkkkkk

PVLModuleContents .= SEQUENCE
{
SEQUENCE OF
CHOICE
{
Statement,
WSC

}
EndStatement OPTIONAL

}

EndKeyword == IA5String("END")

EndStatement == SEQUENCE

{

EndKeyword,

CHOICE
{
SemiColon,
WhiteSpace,
Comment,
EndProvidedOctetSeq

}
}

Statement ::= CHOICE
{

AssignmentStmt,
AggregationBlock

}

Issue 1 20

May 1992

CCSDS Recommendation: Parameter Value Language Specification

*kkkkk *% *kkkkk *kkkkk *% *kkkkk *%

__ kkkkk

- weex AGGREGATION BLOCK

__ kkkkk

*kkkkk *% *kkkkk *kkkkk *% *kkkkk *%

AggregationBlock CHOICE

{
AggrGroup,
AggrObiject
}

SEQUENCE
{
WSC,
Statement,
-- Must contain at least one statement
SET OF
CHOICE
{
WSC,
Statement

}

AggrContents

}

AggrGroup == SEQUENCE
{
BeginGroupStmt,
AggrContents,
EndGroupStmt

}

AggrObject ;= SEQUENCE
{
BeginObjectStmt,
AggrContents,
EndObjectStmt

}

Issue 1 21 May 1992

CCSDS Recommendation: Parameter Value Language Specification

BeginGroupKeywd

BeginGroupStmt

BeginObjectKeywd

BeginObjectStmt

BlockName

EndGroupKeywd

Issue 1

CHOICE

{
IA5String("BEGIN_GROUP"),

IA5String("GROUP")
}

SEQUENCE

{

BeginGroupKeywd,

WSC,

AssignmentSymbol,

WSC,

BlockName,

-- Block Name must match Block Name
-- in paired End Group Statement
StatementDelim

}

CHOICE

{
IASString("BEGIN_OBJECT"),

IA5String("OBJECT")
}

SEQUENCE

{

BeginObjectKeywd,

WSC,

AssignmentSymbol,

WSC,

BlockName,

-- Block Name must match Block Name
-- in paired End Object Statement
StatementDelim

}

SEQUENCE

{

-- Must not contain the sequence /* or */

-- Must not be reserved keyword (see Section 3.2)
-- Must not conform to numeric encoding rules

-- Must not conform to date/time encoding rules
UnrestrictedChar,

SEQUENCE OF UnrestrictedChar

}

IA5String("END_GROUP")

22

May 1992

CCSDS Recommendation: Parameter Value Language Specification

EndGroupLabel := SEQUENCE
{
AssignmentSymbol,
WSC,
BlockName
-- Block Name must match Block Name
-- in paired Begin Group Statement

}

EndGroupStmt SEQUENCE

{

EndGroupKeywd,

WSC,

EndGroupLabel OPTIONAL,
StatementDelim

}

SEQUENCE
{
AssignmentSymbol,
WSC,
BlockName
-- Block Name must match Block Name
-- in paired Begin Object Statement

}

IA5String("END_OBJECT")

EndObjectLabel

EndObjectKeywd

EndObjectStmt SEQUENCE

{

EndObjectKeywd,

WSC,

EndObjectLabel OPTIONAL,
StatementDelim

}

Issue 1 23 May 1992

CCSDS Recommendation: Parameter Value Language Specification

kkkkkkkkkkkkkkkkkkkkhhkkhkkkhkkkkkkhhkkkhkkkkkkkkkhkkkkk

__ kkkokk

-- Fk ASSIGNMENT STATEMENT

Kkkkk

kkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkhhkkkhkkkkkkkkkkhkkkkk

AssignmentStmt .= SEQUENCE
{
Name,
WSC,
AssignmentSymbol,
WSC,
Value,
StatementDelim

}

Name .= SEQUENCE
-- Must not contain the sequence /* or */
-- Must not be reserved keyword (see Section 3.2)
-- Must not conform to numeric encoding rules
-- Must not conform to date/time encoding rules
{
UnrestrictedChar,
SEQUENCE OF UnrestrictedChar

}

SimpleValue ;= CHOICE
{
Numeric,
String,
DateTimeValue

}

Value .= SEQUENCE

{
CHOICE

{
SimpleValue,
Set,
Sequence
h
WSC,
UnitsExpression OPTIONAL

}

Issue 1 24

May 1992

CCSDS Recommendation: Parameter Value Language Specification

*kkkkk *% *kkkkk *kkkkk *% *kkkkk *%

__ kkkkk

- ¥ COMMENT

__ kkkkk

*kkkkk *% *kkkkk *kkkkk *% *kkkkk *%

Comment

SEQUENCE
{
CommentStart,
CommentString,
CommentEnd

}

CHOICE
{
UnrestrictedChar,
WhiteSpace,
Apostrophe,
QuoteMark,
OpenAngleBracket,
CloseAngleBracket,
SpecialChar

}

CommentEnd = 1ASString("*/")

CommentChar

CommentStart = 1AS5String("/*")

CommentString := SEQUENCE OF CommentChar
-- Must not contain the sequence "/*" or "*/"

Issue 1 25 May 1992

CCSDS Recommendation: Parameter Value Language Specification

DateTimeValue

Colon

Date

DateTimeSeparator

Issue 1

o Kkkkkkkkkkkkkkkkkkkkkhhkkhkkkhkkkhkkkhhkkkhkkkkkkkkkkhkkkkk

DATE/TIME VALUE

o kkkkkkkkkkkkkkkkkkkkkhkkhhkkhkkkkkkhhkkhkkkkkkkkkkhkkkkk

== SEQUENCE

{
CHOICE

{
Date,

Time,
SEQUENCE

{
Date,

DateTimeSeparator,

Time
}
3

TimeCodeTerminator OPTIONAL

}

IA5String(":")

SEQUENCE

{

Year,

Hyphen,

CHOICE
{
DayOfYear,
MonthAndDay

}
}

= 1A5String("T")

26

May 1992

CCSDS Recommendation: Parameter Value Language Specification

DayOfMonth ::= CHOICE

{

SEQUENCE
{
-- 01 to 09
DecimalChar0,
PosDecimalChar
}l

SEQUENCE
{
--10to 20
DecimalCharlto2,
PosDecimalChar
}l

SEQUENCE
{
--30to 31
DecimalChar3,
DecimalCharOto1
}

Issue 1 27 May 1992

CCSDS Recommendation: Parameter Value Language Specification

DayOfYear == CHOICE

{
SEQUENCE

{

-- 001 to 009
DecimalChar0,
DecimalChar0,
PosDecimalChar

};
SEQUENCE

{

-- 010 to 099
DecimalChar0,
PosDecimalChar,
DecimalChar

};
SEQUENCE

{

-- 100 to 299
DecimalCharlto2,
DecimalChar,
DecimalChar

}!
SEQUENCE
{
-- 300 to 366
DecimalChar3,
CHOICE
{
SEQUENCE
{
-- 300 to 359
DecimalChar0to5,
DecimalChar
}1
SEQUENCE
{
-- 360 to 366
DecimalChar®6,
DecimalCharOto6
}
}
}
}
DecFracSecond .= SEQUENCE
{

DecimalChar,
SEQUENCE OF DecimalChar
}

Issue 1 28 May 1992

CCSDS Recommendation: Parameter Value Language Specification

DecFracSecondSeq == SEQUENCE

EecimaIPoint,

DecFracSecond

}
DecimalChar0 = 1A5String("0")
DecimalCharOtol = 1A5String(FROM (0" | "1")
DecimalChar0Oto2 = 1A5String(FROM ("0"] "1"| "2"))
DecimalChar0Oto3 = 1A5String(FROM ("0"] "1"| "2"| "3")
DecimalChar0to5 = IA5String(FROM ("0" | "1"| "2"| "3"| "4"| "5"))
DecimalChar0to6 = |A5String(FROM ("0" | "1"| "2"| "3"| "4"| "5" |" 6"))
DecimalCharl = 1A5String("1")
DecimalCharlto2 = 1A5String(FROM ("1"] "2"))
DecimalChar2 = 1A5String("2")
DecimalChar3 = 1A5String("3")
DecimalChar6 = 1A5String("6")
DecimalChar60 = 1A5String("60")

Issue 1 29 May 1992

CCSDS Recommendation:

Hour

Hyphen

Minute

Month

Issue 1

Parameter Value Language Specification

::= CHOICE
{
SEQUENCE
{
--00to 19
DecimalCharOto1,
DecimalChar

};
SEQUENCE

{
-- 20 to 23
DecimalChar2,
DecimalChar0Oto3
}

}

= 1A5String("-")

SEQUENCE
{
-- 00 to 59
DecimalChar0Oto5,
DecimalChar

}

CHOICE

{
SEQUENCE

{

-- 00 to 09
DecimalCharO,
PosDecimalChar

};
SEQUENCE

{

--10to 12
DecimalCharl,
DecimalChar0Oto2

}

30

May 1992

CCSDS Recommendation: Parameter Value Language Specification

MonthAndDay SEQUENCE

{
Month,

Hyphen,
DayOfMonth
}

IA5String(FROM ("1"| "2"| "3"| "4"| "5"| "6"| "7"| "8"| "9"))

PosDecimalChar

CHOICE

{
SEQUENCE

{
-- 00 to 59
DecimalChar0to5,
DecimalChar
}l
DecimalChar60
-- 60 is allowed for leap seconds

}

SEQUENCE
{
Colon,
Second,
DecFracSecondSeq OPTIONAL

}

Time .= SEQUENCE
{
Hour,
Colon,
Minute,
SecondSeq OPTIONAL

}

TimeCodeTerminator = 1A5String("Z")

Second

SecondSeq

Year := SEQUENCE
{
-- year 0000 is not allowed --
DecimalChar,
DecimalChar,
DecimalChar,
DecimalChar

}

Issue 1 31 May 1992

CCSDS Recommendation: Parameter Value Language Specification

Numeric

BinaryChar

BinaryNum

Issue 1

o Kkkkkkkkkkkkkkkkkkkkkhhkkhkkkhkkkhkkkhhkkkhkkkkkkkkkkhkkkkk

__ kkkokk

—wx NUMERIC VALUES

Kkkkk

o kkkkkkkkkkkkkkkkkkkkkhkkhhkkhkkkkkkhhkkhkkkkkkkkkkhkkkkk

CHOICE

{

Integer,
FloatingPoint,
Exponential,
BinaryNum,
OctalNum,
HexadecimalNum

}

IA5String(FROM("0" |"1"))

SEQUENCE

{
Sign OPTIONAL,

IA5String("2"),

RadixSymbol,

-- Binary characters are interpreted

-- as a positive and uncomplemented integer
BinaryChar,

SEQUENCE OF BinaryChar,

RadixSymbol

}

32

May 1992

CCSDS Recommendation: Parameter Value Language Specification

Exponential == SEQUENCE
{
CHOICE
{
Integer,
FloatingPoint
}l
ExponentMark,
Integer

}

ExponentMark IA5String(FROM("e" |"E"))

SEQUENCE
{
Sign OPTIONAL,
-- If all digits in number are 0,
-- only legal value for sign is +
CHOICE

{
SEQUENCE

{

DecimalChar,

-- Ensures at least one digit to
-- left of decimal point
SEQUENCE OF DecimalChar,
DecimalPoint,

SEQUENCE OF DecimalChar

}l
SEQUENCE

{

SEQUENCE OF DecimalChar,
DecimalPoint,

DecimalChar,

-- Ensures at least one digit to
-- right of decimal point
SEQUENCE OF DecimalChar

}

FloatingPoint

}

HexadecimalChar = IA5String(FROM("0" |"1" |"2" |"3" ["4" |"5" |"6" ["7" |"8" |"9" |"A" |"B"
' D" ['EY 'R '8 B 6" ['d ['e” ['F)

Issue 1 33 May 1992

CCSDS Recommendation: Parameter Value Language Specification

HexadecimalNum == SEQUENCE
{
Sign OPTIONAL,
IA5String("16"),
RadixSymbol,
-- Hexadecimal characters are interpreted
-- as a positive and uncomplemented integer
HexadecimalChar,
SEQUENCE OF HexadecimalChar,
RadixSymbol

}

SEQUENCE
{
Sign OPTIONAL,
-- If all digits in number are 0,
-- only legal value for sign is +
DecimalChar,
SEQUENCE OF DecimalChar

}

IA5String(FROM("0" |"1" |"2" |"3" |"4" |"5" |"6" |"7"))

Integer

OctalChar

OctalNum

SEQUENCE
{
Sign OPTIONAL,
IA5String("8"),
RadixSymbol,
-- Octal characters are interpreted
-- as a positive and uncomplemented integer
OctalChar,
SEQUENCE OF OctalChar,
RadixSymbol

}

RadixSymbol IASString("#")

Sign IA5String(FROM("+" |"-"))

Issue 1 34 May 1992

Sequence

SequenceEnd
SequenceStart

SequenceValue

Issue 1

CCSDS Recommendation: Parameter Value Language Specification

*kkkkk

__ kkkkk

- weex - SEQUENCE

__ kkkkk

*% *kkkkk *kkkkk *% *kkkkk *%

*kkkkk

SEQUENCE
{

SequenceStart,

WSC,

SequenceValue OPTIONAL,
WSC,

SequenceEnd

}

IA5String(")")

IA5String("("

SEQUENCE
{
Value,
SEQUENCE OF
SEQUENCE
{
WSC,
SeparatorSymbol,
WSC,
Value
}
}

35 May 1992

CCSDS Recommendation: Parameter Value Language Specification

kkkkkkkkkkkkkkkkkkkkhhkkhkkkhkkkkkkhhkkkhkkkkkkkkkhkkkkk

__ kkkokk

L kkkokk SET

Kkkkk

kkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkhhkkkhkkkkkkkkkkhkkkkk

Set = SEQUENCE
{
SetStart,
WSC,
SetValue OPTIONAL,
WSC,
SetEnd

}

SetEnd IA5String("}")

SetStart = 1A5String("{")
SetValue .= SEQUENCE
{
Value,
SEQUENCE OF
SEQUENCE
{
WSC,
SeparatorSymbol,
WSC,
Value
}
}

Issue 1 36 May 1992

CCSDS Recommendation: Parameter Value Language Specification

*kkkkk *% *kkkkk *kkkkk *% *kkkkk *%

__ kkkkk

- ¥ STRING

__ kkkkk

*kkkkk *% *kkkkk *kkkkk *% *kkkkk *%

CHOICE
{
QuotedString,
UnquotedString

}

CHOICE
{
QuotedString1l,
QuotedString2

}

CHOICE
{
UnrestrictedChar,
WhiteSpace,
OpenAngleBracket,
CloseAngleBracket,
SpecialChar

}

QuoteMark

String

QuotedString

QuotedChar

QstringDelim1

QstringDelim2 Apostrophe

QuotedStringl SEQUENCE

{

QstringDelim1,

-- quotation mark

SEQUENCE OF

CHOICE

{
Apostrophe,
-- character used for QstringDelim2
QuotedChar
L

QstringDelim1

-- quotation mark

}

Issue 1 37 May 1992

CCSDS Recommendation: Parameter Value Language Specification

QuotedString2

UnquotedString

Issue 1

== SEQUENCE

{

QstringDelim2,

-- apostrophe

SEQUENCE OF
CHOICE

{
QuoteMark,

-- character used for QstringDelim1

QuotedChar

}!
QstringDelim2
-- apostrophe

}

== SEQUENCE

-- Must not contain the sequence /* or */

-- Must not be reserved keyword (see Section 3.2)
-- Must not conform to numeric encoding rules
-- Must not conform to date/time encoding rules

{

UnrestrictedChar,
SEQUENCE OF UnrestrictedChar

}

38

May 1992

CCSDS Recommendation: Parameter Value Language Specification

. *k
__ kkkkk
__ kkkkk

__ kkkkk

*% *% *kkkkk *kkkkk *% *kkkkk *%

*%

UnitsExpression

RemainUnitValueChars

UnitsChar

UnitsEnd
UnitsStart

UnitsValue

Issue 1

:= SEQUENCE

{
UnitsStart,

SEQUENCE OF WhiteSpace,
UnitsValue,

SEQUENCE OF WhiteSpace,
UnitsEnd

}

::= SEQUENCE

{
SEQUENCE OF

CHOICE
{
WhiteSpace,
UnitsChar

}l
UnitsCha

}

::= CHOICE

{

UnrestrictedChar,
SpecialChar,
Apostrophe,
QuoteMark

}

.:=CloseAngleBracket

OpenAngleBracket

SEQUENCE

{
UnitsCharr,

RemainUnitValueChars OPTIONAL
}

39

May 1992

Apostrophe
AssignmentSymbol

CarriageRet

CloseAngleBracket
DecimalChar

DecimalPoint

EndProvidedOctetSeq

FormFeed

HorizontalTab

Letter

LineFeed

OpenAngleBracket

QuoteMark

SemiColon

SeparatorSymbol

Issue 1

CCSDS Recommendation: Parameter Value Language Specification

kkkkkkkkkkkkkkkkkkkkhhkkhkkkhkkkkkkhhkkkhkkkkkkkkkhkkkkk

__ kkkokk
L kkkokk

Kkkkk

COMMON LANGUAGE ELEMENTS

kkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkhhkkkhkkkkkkkkkkhkkkkk

IA5String("™")
IA5String("=")

IA5String(13)
-- ASCII carriage return

IA5String(">"
IA5Striing(FROM("0" ["1" ["2" |"3" |"4" |"5" |"6" |"7" |"8" |"9")

IA5String(".")
-- full stop

EXTERNAL

-- This is the token returned

-- by the system that indicates

-- that the end of the externally

-- provided octet sequence has been reached.

IA5String(12)
-- ASCI| form feed

IA5String(9)
-- ASCII horizontal tab

IA5String(FROM("a" |"b" ["c" |"d" |"e" |"f" |"g" |"h" |"i" |"j" |"K" |"I" |"m"
' O" [P g [T ST I [[V W X Y 2 AT B
['C D" ['E" ['F" ['G" ['H" 1" [3" 'K ['L" |'M" I'N" ['O" ['P"
QIR 'S [T [U" [V [W" X" ["Y" 'ZY)

IA5String(10)
-- ASCII line feed

IA5String("'<"

IA5String(34)
-- ASCII quote symbol

IA5String(";")

IA5String(",")

40 May 1992

CCSDS Recommendation: Parameter Value Language Specification

Space = 1A5String(32)
-- ASCII space character
SpecialChar 2= JASString(FROMC"C')" 1" | ¥ 1™ I 15 =" 1" 1T) ot | "&”
"~)

-- Characters allowed in comments, quoted strings
-- or units but not in Unquoted strings, block names
-- or parameter names

StatementDelim ::= CHOICE

{
SEQUENCE

{

WSC,

CHOICE
{
SemiColon,
WhiteSpace,
Comment
-- ensure that a statement delimiter consists
-- of one semicolon, optionally preceded by
-- multiple white-spaces and/or comments,
-- OR one or more comments and/or
-- white-space sequences.

}
}l
EndProvidedOctetSeq
}

UnrestrictedChar ::= CHOICE
{

DecimalChar,
Letter,
UnrestrictedSymbol

}

Issue 1 41 May 1992

CCSDS Recommendation: Parameter Value Language Specification

UnrestrictedSymbol
VerticalTab

IASString(FROM("$" |"-" |"." |"/" |":" "™ |"@" |"\" ["~ """ |"*"))
IA5String(11)
-- ASCI| vertical tab

WhiteSpace CHOICE

{

Space,
HorizontalTab,
VerticalTab,
CarriageRet,
LineFeed,
FormFeed

}

WSC := SEQUENCE OF
CHOICE
{
WhiteSpace,
Comment

}

END
3.2 Reserved Keywords

The following reserved keywords are not available for use as parameter names in assignment statements:

BEGIN_GROUP
BEGIN_OBJECT
END_GROUP
END_OBJECT
END

GROUP
OBJECT

Issue 1 42 May 1992

CCSDS Recommendation: Parameter Value Language Specification

ANNEX A -- ACRONYMS AND GLOSSARY

(THIS ANNEX IS A PART OF THE RECOMMENDATION)

Purpose:

This annex defines key acronyms and the glossary of terms which are used throughout this Recommendation to
describe the concepts and elements of the Parameter Value Language

Issue 1 43 May 1992

CCSDS Recommendation: Parameter Value Language Specification

ASCII
ASN.1
CCSDS
ISO
PVL
SFDU

Issue 1

ANNEX A

Acronyms

American Standard Code for Information Interchange
Abstract Syntax Notation One

Consultative Committee for Space Data Systems
International Organization for Standardization
Parameter Value Language

Standard Formatted Data Unit

44

May 1992

CCSDS Recommendation: Parameter Value Language Specification
Glossary of Terms
Aggregation Block A named collection of assignment statements and/or other aggregation blocks.

Alphanumeric character set: The set of characters comprised of the digits 0 through 9 and the letters a-z or
A-Z.

Block name: The name used to identify an aggregation block.

Comment: A delimited string of characters, which is treated as white space syntactically. Comments are
intended to provide explanatory information.

Comment delimiters: The character pairs (/* and */) used to delimit a comment.

End Statement: An optional statement which terminates the PVL Module prior to the end of the provided octet
space.

Numeric: A sequence of unrestricted characters that conform to encoding rules which permit its interpretation
as a number.

Octet: A sequence of eight bits.
Parameter Name: The name used to reference the value assigned in the assignment statement.

PVL Module: The externally defined octet space that may optionally terminated by a PVL end statement,
within which PVL statements are written.

Reserved Characters: The set of PVL characters which may not occur in parameter names, unquoted strings,
or block names.

Quote String Delimiters: The symbols apostrophe or quotation mark.
Quoted String: Zero or more PVL characters enclosed between matching quote string delimiters.

SFDU (Standard Formatted Data Unit): Data units that conform to a specific set of CCSDS
Recommendations.

Sequence: A delimited collection of values in which the order of the enclosed values is significant.
Set: A delimited collection of values in which the order of the enclosed values is not significant.
Unquoted String: A value consisting of a sequence of unrestricted characters.

Unrestricted Characters: The set of PVL characters which may be used to form parameter names, unquoted
strings or block names.

White space:One or more space or format effector characters. Used to promote readability between syntactic
elements or within the contents of comment or text strings.

Issue 1 45 May 1992

CCSDS Recommendation: Parameter Value Language Specification

ANNEX B -- CHARACTER DEFINITIONS

(THIS ANNEX IS PART OF THIS SPECIFICATION.)
Purpose:

This annex contains the definition of the character representations used by the Parameter Value Language
Specification.

Issue 1 46 May 1992

CCSDS Recommendation: Parameter Value Language Specification

PVL CHARACTER SET

The PVL Character set is a subset of the ASCII character set, specifically the 7-bit portion (MSB=0) of ISO

8859 GO (Reference[3]) which set corresponds to ANSI 3.4-1977. This is also the same as the ISO 646 IRV set
(Reference [2]), with the exception of positions 36 and 126, which display the currency symbol and overscore,
respectively, in the IRV.

The PVL character set consists of the printable characters occupying the positions 33 to 126, inclusive (the
Graphics Characters), the space (32), and the format effectors (positions 9 to 13 inclusive). These characters are
listed on the following page.

Issue 1 47 May 1992

CCSDS Recommendation: Parameter Value Language Specification

Symbol

©CoOoO~NOOUDS~WNEO ™"

CFTRXC T IOTMMOUO®Z>E@ ™YV I AT

Issue 1

Name

Horizontal tab
Line feed
Vertical tab
Form feed
Carriage return
Space
Exclamation mark
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Left parenthesis
Right parenthesis
Asterisk

Plus sign
Comma
Hyphen-minus
Full stop
Solidus

Digit zero

Digit one

Digit two

Digit three
Digit four

Digit five

Digit six

Digit seven
Digit eight

Digit nine
Colon
Semicolon
Less than sign
Equals sign
Greater than sign
Question mark
Commercial at
Capital letter A
Capital letter B
Capital letter C
Capital letter D
Capital letter E
Capital letter F
Capital letter G
Capital letter H
Capital letter |
Capital letter J
Capital letter K
Capital letter L

Decimal
Code

09
10
11
12
13
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

48

Symbol

>~ N<XsS<CH0NDOTOZZ

I""_"““N‘<><E<C""U)“_Q'OOJB_X‘_'_'I(Q_"‘(‘D o0 oo

Name

Capital letter M
Capital letter N
Capital letter O
Capital letter P
Capital letter Q
Capital letter R
Capital letter S
Capital letter T
Capital letter U
Capital letter V
Capital letter W
Capital letter X
Capital letter Y
Capital letter Z
Left square bracket
Reverse solidus

Right square bracket

Circumflex accent
Low line, underline
Grave accent
Small letter a
Small letter b
Small letter ¢
Small letter d
Small letter e
Small letter f
Small letter g
Small letter h
Small letter i
Small letter j
Small letter k
Small letter |
Small letter m
Small letter n
Small letter o
Small letter p
Small letter g
Small letter r
Small letter s
Small letter t
Small letter u
Small letter v
Small letter w
Small letter x
Small letter y
Small letter z
Left curly bracket
Vertical line
Right curly bracket
Tilde

Decimal
Code

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

May 1992

CCSDS Recommendation: Parameter Value Language Specification

INDEX
Aggregation blocK. e 6, 15, 17, 19, 21, 45
Assignment statement. e 5-7, 15, 16, 19, 24, 45
BINarY . . e 8,9, 32
BloCK Name. 15-17, 22, 23, 45
COMMENt 4,5,7, 10, 18520, 25, 41, 42, 45
Date/Time. . . . o e 7,18-12, 19, 22, 24, 26, 38
Decimal 8-10, 33, 48
ENnd statement. e 5, 16, 18, 45
EXplicit delimiter e e 6,7
EXponential. 8,9, 32
Floating PoINt e 8
Formal specification e 19
Hexadecimal. e 8:10, 34
] 5T 0T 8,9 32, 34
NUMBIICS .« o o v ittt e e e e e e e e e e e e e e 8,9
Octal . .. 8,9, 34
Parameter Name. e 6, 7, 15, 45
PVL character Set. e e 3, 47
PVL module 5, 18520, 45
QuUOtEd SHIING ot 9, 10, 45
Reserved CharaCters. e e 2, 3,10, 45
SEQUENCE . . . o it e e e 13, 35, 45
Sl . o 13, 36, 45
SiImMple Value. e 7,8, 14
Statement delimiter. e e 6, 19, 41
SN . . . ot 8:-11, 19, 24, 37, 45
Syntax diagram. 5-8, 10-16, 18
UNItS BXPIESSION . .« o ot it e e e e 7, 14, 19, 39
Unquoted StriNg. ot e e 10, 11, 45
Unrestricted charaCters. 3,7,8,11, 45
ValUe . . o 5-8, 13, 24, 35, 36, 45
White SpacCeo 3:7, 10, 11, 14, 18, 19, 45

Issue 1 49 May 1992

	Contents
	References
	Section 1
	Section 2
	Section 3
	Annex A
	Annex B
	Index

