
CCSDS Historical Document
This document’s Historical status indicates that it is no longer current. It
has either been replaced by a newer issue or withdrawn because it was
deemed obsolete. Current CCSDS publications are maintained at the
following location:

http://public.ccsds.org/publications/

Recommendation for Space Data System Practices

SPACE LINK EXTENSION—
APPLICATION PROGRAM

INTERFACE FOR TRANSFER
SERVICES—CORE

SPECIFICATION

RECOMMENDED PRACTICE

CCSDS 914.0-M-1

Magenta Book
October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

Recommendation for Space Data System Practices

SPACE LINK EXTENSION—
APPLICATION PROGRAM

INTERFACE FOR TRANSFER
SERVICES—CORE

SPECIFICATION

RECOMMENDED PRACTICE

CCSDS 914.0-M-1

Magenta Book
October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

AUTHORITY

 Issue: Recommended Practice, Issue 1

 Date: October 2008

 Location: Washington, DC, USA

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and represents the consensus
technical agreement of the participating CCSDS Member Agencies. The procedure for
review and authorization of CCSDS documents is detailed in the Procedures Manual for the
Consultative Committee for Space Data Systems, and the record of Agency participation in
the authorization of this document can be obtained from the CCSDS Secretariat at the
address below.

This document is published and maintained by:

CCSDS Secretariat
Space Communications and Navigation Office, 7L70
Space Operations Mission Directorate
NASA Headquarters
Washington, DC 20546-0001, USA

CCSDS 914.0-M-1 Page i October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially
established by the management of its members. The Committee meets periodically to address
data systems problems that are common to all participants, and to formulate sound technical
solutions to these problems. Inasmuch as participation in the CCSDS is completely
voluntary, the results of Committee actions are termed Recommendations and are not in
themselves considered binding on any Agency.

CCSDS Recommendations take two forms: Recommended Standards that are prescriptive
and are the formal vehicles by which CCSDS Agencies create the standards that specify how
elements of their space mission support infrastructure shall operate and interoperate with
others; and Recommended Practices that are more descriptive in nature and are intended to
provide general guidance about how to approach a particular problem associated with space
mission support. This Recommended Practice is issued by, and represents the consensus of,
the CCSDS members. Endorsement of this Recommended Practice is entirely voluntary
and does not imply a commitment by any Agency or organization to implement its
recommendations in a prescriptive sense.

No later than five years from its date of issuance, this Recommended Practice will be
reviewed by the CCSDS to determine whether it should: (1) remain in effect without change;
(2) be changed to reflect the impact of new technologies, new requirements, or new
directions; or (3) be retired or canceled.

In those instances when a new version of a Recommended Practice is issued, existing
CCSDS-related member Practices and implementations are not negated or deemed to be non-
CCSDS compatible. It is the responsibility of each member to determine when such Practices
or implementations are to be modified. Each member is, however, strongly encouraged to
direct planning for its new Practices and implementations towards the later version of the
Recommended Practice.

CCSDS 914.0-M-1 Page ii October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or
modification of this document may occur. This Recommended Practice is therefore subject
to CCSDS document management and change control procedures, which are defined in the
Procedures Manual for the Consultative Committee for Space Data Systems. Current
versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the
CCSDS Secretariat at the address indicated on page i.

CCSDS 914.0-M-1 Page iii October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies

– Agenzia Spaziale Italiana (ASI)/Italy.
– British National Space Centre (BNSC)/United Kingdom.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– China National Space Administration (CNSA)/People’s Republic of China.
– Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Federal Space Agency (FSA)/Russian Federation.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– Japan Aerospace Exploration Agency (JAXA)/Japan.
– National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.
– Belgian Federal Science Policy Office (BFSPO)/Belgium.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– Centro Tecnico Aeroespacial (CTA)/Brazil.
– Chinese Academy of Sciences (CAS)/China.
– Chinese Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
– Danish National Space Center (DNSC)/Denmark.
– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Hellenic National Space Committee (HNSC)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Institute of Space Research (IKI)/Russian Federation.
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– Korea Aerospace Research Institute (KARI)/Korea.
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
– Ministry of Communications (MOC)/Israel.
– National Institute of Information and Communications Technology (NICT)/Japan.
– National Oceanic and Atmospheric Administration (NOAA)/USA.
– National Space Organization (NSPO)/Chinese Taipei.
– Naval Center for Space Technology (NCST)/USA.
– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
– Swedish Space Corporation (SSC)/Sweden.
– United States Geological Survey (USGS)/USA.

CCSDS 914.0-M-1 Page iv October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

DOCUMENT CONTROL

Document Title Date Status

CCSDS
914.0-M-1

Space Link Extension—Application
Program Interface for Transfer
Services—Core Specification,
Recommended Practice, Issue 1

October
2008

Original issue

EC 1 Editorial Change 1 December
2008

Updates references to
recent publications

CCSDS 914.0-M-1 Page v October 2008 December 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CONTENTS

Section Page

1 INTRODUCTION.. 1-1

1.1 PURPOSE OF THIS RECOMMENDED PRACTICE .. 1-1
1.2 SCOPE .. 1-1
1.3 APPLICABILITY ... 1-2
1.4 RATIONALE.. 1-3
1.5 DOCUMENT STRUCTURE ... 1-3
1.6 DEFINITIONS ... 1-7
1.7 REFERENCES ... 1-9

2 DESCRIPTION OF THE SLE API ... 2-1

2.1 INTRODUCTION .. 2-1
2.2 SPECIFICATION METHOD AND NOTATION ... 2-2
2.3 LOGICAL VIEW ... 2-7
2.4 SECURITY ASPECTS OF CORE SLE API CAPABILITIES............................ 2-58

3 SPECIFICATION OF API COMPONENTS .. 3-1

3.1 INTRODUCTION .. 3-1
3.2 API PROXY ... 3-1
3.3 API SERVICE ELEMENT ... 3-27
3.4 SLE OPERATIONS ... 3-52
3.5 SLE UTILITIES ... 3-56
3.6 SLE APPLICATION .. 3-63
3.7 HANDLING OF IN PROCESS THREADS AND EXTERNAL EVENTS 3-70

4 STATE TABLES .. 4-1

4.1 INTRODUCTION .. 4-1
4.2 NOTATION .. 4-1
4.3 GENERAL ERROR HANDLING CONVENTIONS .. 4-2
4.4 STATE TABLE FOR ASSOCIATIONS ... 4-2
4.5 STATE TABLES FOR SERVICE INSTANCES .. 4-15

ANNEX A SPECIFICATION OF COMMON INTERFACES (Normative) A-1
ANNEX B RESULT CODES (Normative) ...B-1
ANNEX C STRUCTURE OF THE SERVICE INSTANCE IDENTIFIER FOR

VERSION 1 OF THE SLE SERVICES RAF, RCF, AND CLTU
(Normative)... C-1

ANNEX D SIMPLE COMPONENT MODEL (Normative) .. D-1

CCSDS 914.0-M-1 Page vi October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CONTENTS (continued)

Section Page

ANNEX E CONFORMANCE (Normative) ...E-1
ANNEX F INTERACTION OF COMPONENTS (Informative) F-1
ANNEX G INTERFACE CROSS REFERENCE (Informative) G-1
ANNEX H INDEX TO DEFINITIONS (Informative) ... H-1
ANNEX I ACRONYMS AND ABBREVIATIONS (Informative)............................... I-1
ANNEX J INFORMATIVE REFERENCES (Informative) .. J-1

Figure

1-1 SLE Services and SLE API Documentation ... 1-5
2-1 UML Stereotypes Used in This Recommended Practice .. 2-3
2-2 Top Level Decomposition of the API ... 2-7
2-3 Structure of the Package API Proxy ... 2-9
2-4 Reporting and Tracing by the Proxy ... 2-10
2-5 Configuration Database of the Proxy.. 2-20
2-6 Structure of the Package API Service Element .. 2-23
2-7 Reporting and Tracing by the Service Element .. 2-24
2-8 Sequential Control Interface Component Class Controlled Component 2-39
2-9 Concurrent Control Interface .. 2-43
2-10 Structure of the Package SLE Application ... 2-44
2-11 Reporting and Tracing Interfaces Provided by the Application 2-45
2-12 Operation Objects ... 2-49
2-13 Operation Object Interfaces for Common Association Management 2-53
2-14 Common SLE Operation Objects ... 2-54
2-15 SLE Utilities ... 2-56
4-1 Processing Context for the Association State Table ... 4-3
4-2 Processing Context for the Service Instance State Table ... 4-16
B-1 Structure of Result Codes ...B-1
F-1 Configuration of Components .. F-3
F-2 Configuration of Interfaces for Service Provisioning ... F-3
F-3 Interaction of API Components .. F-4
F-4 Initialization and Shutdown .. F-5
F-5 Collaboration Diagram for Use of Operation Objects .. F-8
F-6 Sequence Diagram for Use of Operation Objects ... F-9
F-7 User Side Binding (User Initiated Bind)... F-12
F-8 User Side Unbinding (User Initiated Bind) .. F-13
F-9 Provider Side Binding (User Initiated Bind) .. F-14
F-10 Provider Side Unbinding (User Initiated Bind) .. F-16

CCSDS 914.0-M-1 Page vii October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page viii October 2008

CONTENTS (continued)

Table Page

C-1 Identifiers and Abbreviations for Attributes ...C-3
E-1 Optional Features for the API Proxy .. E-3
E-2 Optional Features for the API Service Element .. E-6
E-3 Parameters That May Be Constrained by a Proxy .. E-9
E-4 Parameters That May Be Constrained by a Service Element E-9

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1 INTRODUCTION

1.1 PURPOSE OF THIS RECOMMENDED PRACTICE

The purpose of this Recommended Practice is to define a C++ Application Program Interface
(API) for CCSDS Space Link Extension (SLE) Transfer Services, which is independent of
any specific technology used for communications between an SLE service user and an SLE
service provider.

This API is intended for use by application programs implementing SLE services. It can be
configured to support SLE service user applications or SLE service provider applications.

This API is also intended to simplify the implementation of gateways that are required to
achieve interoperability between SLE service provider and SLE service user applications
using different communications technologies.

Using this Application Program Interface Recommended Practice, API implementations
(software packages) able to run on specific platforms can be developed. Once developed,
such a package can be supplied to new users of SLE services for integration with their user or
production facilities, thus minimizing their investment to buy into SLE support.

1.2 SCOPE

1.2.1 ITEMS COVERED BY THIS RECOMMENDED PRACTICE

This Recommended Practice defines the Application Program Interface in terms of:

a) the components that provide the services of the API;

b) the functionality provided by each of the components;

c) the interfaces provided by each of the components; and

d) the externally visible behavior associated with the interfaces exported by the
components.

It does not specify:

a) individual implementations or products;

b) the internal design of the components; and

c) the technology used for communications.

This Recommended Practice defines those aspects of the Application Program Interface,
which are common for all SLE service types or for a subset of the SLE service types, e.g., all
return link services or all forward link services. It also defines a framework for specification
of service type-specific elements of the API. Service-specific aspects of the API are defined

CCSDS 914.0-M-1 Page 1-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

by supplemental Recommended Practice documents for SLE return link services (references
[10], [11], and [12]) and SLE forward link services (references [13] and [14]).

This Recommended Practice for the Application Program Interface responds to the
requirements imposed on such an API by the CCSDS SLE transfer service Recommended
Standards that were available when this Recommended Practice was released.

1.2.2 CONFORMANCE TO CCSDS RECOMMENDED STANDARDS

This version of the SLE API Recommended Practice conforms to the CCSDS Recommended
Standards for Space Link Extension Services, referenced in 1.7, with the exception of the
following optional features:

a) The negotiation procedure for version numbers in the BIND operation is not
supported. If the responder does not support the version number identified in the
BIND Invocation, it responds with a BIND Return containing a negative result and
the diagnostic ‘version number not supported’. The responder does not propose an
alternative version number.

b) Provider-initiated binding, specified by CCSDS Recommended Standards for return
link services is not included in this Recommended Practice. The management
parameters that specify the bind initiative are supported to simplify addition of this
procedure in later versions.

1.3 APPLICABILITY

For the SLE transfer services Return All Frames (RAF), Return Channel Frames (RCF), and
Forward CLTU, the API specified in this document supports two versions, namely:

a) version 1 as specified by references [C1], [C2], and[C3]; and

b) version 2 as specified by references [4], [5], and [7].

Support for version 1 of these services is included for backward compatibility purposes for a
limited time and may not be continued in future versions of this specification. Support for
version 1 of the RAF, RCF and CLTU services implies that SLE API implementations of this
specification are able to interoperate with peer SLE systems that comply with the
specification of the Transport Mapping Layer (TML) in ‘Specification of a SLE API Proxy
for TCP/IP and ASN.1’, ESOC, SLES-SW-API-0002-TOS-GCI, Issue 1.1, February 2001.

Version dependent provisions within this Recommended Practice are marked as follows:

– [V1:] for provisions specific to version 1 of RAF, RCF, or CLTU; and

– [V2:] for provisions specific to version 2 of RAF, RCF, or CLTU.

CCSDS 914.0-M-1 Page 1-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1.4 RATIONALE

This Recommended Practice describes the services provided by a software package
implementing the API to application software using the API. It specifies the mapping of the
SLE Transfer Services specifications to specific functions and parameters of the SLE API. It
also specifies the distribution of responsibility for specific functions between SLE API
software and application software. The distribution of responsibility has been defined with
due consideration for reusability of software packages implementing the SLE API.

The goal of this Recommended Practice is to create a guide for interoperability between

a) software packages implementing the SLE API; and

b) application software using the SLE API.

This interoperability guide also allows exchangeability of different products implementing
the SLE API, as long as they adhere to the interface specification of this Recommended
Practice.

1.5 DOCUMENT STRUCTURE

1.5.1 OVERVIEW

This Recommended Practice is organized in two parts and a set of annexes.

1.5.1.1 Part I—The Descriptive Part

The descriptive part presents the API Model in section 2 using the Unified Modeling
Language (UML), see reference [J6].

1.5.1.2 Part II—The Prescriptive Part

The prescriptive part contains the specification of the API. In case of any discrepancies
between the descriptive part and the prescriptive part, the specifications in the latter shall
apply.

Section 3 contains detailed specifications of the API components and of the interfaces that
must be provided by the application.

Section 4 defines the state tables that must be implemented by the API.

CCSDS 914.0-M-1 Page 1-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1.5.1.3 Annexes

Annex A contains the detailed declaration of the C++ interfaces, which are common for all
SLE service types.

Annex B lists the result codes that are used by the API.

[V1:] For version 1 of the services RAF, RCF, and CLTU, annex C defines a standard ASCII
representation for the service instance identifier and lists the attribute identifiers and
abbreviations that are valid for the service instance identifier.

[V2:] For later versions of these services and all other services, these specifications are
provided by the applicable CCSDS Recommended Standards.

Annex D describes the design patterns and conventions that shall be applied to API
components. The specifications in this annex are also relevant for the application software
using the API.

Annex E defines requirements for software products claiming conformance with this
Recommended Practice.

Annex F describes the interaction of API components, showing several use cases.

Annex G provides cross-references between interfaces provided by API components and
interfaces used by API components.

Annex H contains an index to definitions.

Annex I explains all acronyms used in this Recommended Practice.

Annex J lists informative reference documents.

1.5.2 DOCUMENTATION TREE FOR SLE SERVICES AND SLE API

This Recommended Practice is based on the cross support model defined in the SLE
Reference Model (reference [3]). The SLE services constitute one of the three types of Cross
Support Services:

a) Part 1: SLE Services;

b) Part 2: Ground Domain Services; and

c) Part 3: Ground Communications Services.

The SLE services are further divided into SLE Service Management and SLE Transfer
Services.

CCSDS 914.0-M-1 Page 1-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – In reference [3], SLE transfer services are identified; however, the complete
service specifications will be provided in separate Recommended Standards.

This Recommended Practice describes how the functions of an SLE transfer service provider
or user can be implemented in a software package for the purpose of providing or using one
or several SLE transfer services. It is part of a suite of documents specifying the API for
SLE transfer services:

a) Core Specification of the Application Program Interface for Transfer Services (this
Recommended Practice);

b) a set of Application Program Interfaces for specific Transfer Services; and

c) Internet Protocol for Transfer Services.

The basic organization of the SLE services and SLE API documentation is shown in
figure 1-1. The various documents are described in the following paragraphs.

Core Specification

Application
Programmer’s

Guide

SLE API for Transfer Services

Forward
SLE Service
Specifications

Return
SLE Service
Specifications

Summary of
Concept and

Rationale

Cross Support
Reference Model

Part 1: SLE Services

Cross Support Concept
Part 1: SLE Services

SLE Executive
Summary

Space Link Extension

Return SLE Service
Specifications

SLE Transfer Services

SLE Service
Management Suite

Internet Protocol for
Transfer Services

Forward SLE Service
Specifications

Legend: Recommended
Practice (Magenta)Report (Yellow)Report (Green)Recommended

Standard (Blue)

Figure 1-1: SLE Services and SLE API Documentation

CCSDS 914.0-M-1 Page 1-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

a) Cross Support Reference Model—Part 1: Space Link Extension Services, a
Recommended Standard that defines the framework and terminology for the
specification of SLE services.

b) Cross Support Concept—Part 1: Space Link Extension Services, a Report introducing
the concepts of cross support and the SLE services.

c) Space Link Extension Services—Executive Summary, an Administrative Report
providing an overview of Space Link Extension (SLE) Services. It is designed to
assist readers with their review of existing and future SLE documentation.

d) Forward SLE Service Specifications, a set of Recommended Standards that provide
specifications of all forward link SLE services.

e) Return SLE Service Specifications, a set of Recommended Standards that provide
specifications of all return link SLE services.

f) Internet Protocol for Transfer Services, a Recommended Standard providing the
specification of the wire protocol used for SLE transfer services.

g) SLE Service Management Specifications, a set of Recommended Standards that
establish the basis of SLE service management.

h) Application Program Interface for Transfer Services—Core Specification, this
document.

i) Application Program Interface for Transfer Services—Summary of Concept and
Rationale, a Report describing the concept and rationale for specification and
implementation of a Application Program Interface for SLE Transfer Services.

j) Application Program Interface for Return Services, a set of Recommended Practice
documents specifying the service-type specific extensions of the API for return link
SLE services.

k) Application Program Interface for Forward Services, a set of Recommended Practice
documents specifying the service-type specific extensions of the API for forward link
SLE services.

l) Application Program Interface for Transfer Services—Application Programmer’s
Guide, a Report containing guidance material and software source code examples for
software developers using the API.

CCSDS 914.0-M-1 Page 1-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1.6 DEFINITIONS

1.6.1 DEFINITION OF TERMS USED IN THIS DOCUMENT

1.6.1.1 Definitions from the SLE Reference Model

This Recommended Practice makes use of the following terms defined in reference [3]:

a) invoker;

b) offline delivery mode;

c) online delivery mode;

d) operation;

e) performer;

f) service provider (provider);

g) service user (user);

h) SLE protocol data unit (SLE-PDU);

i) SLE transfer service instance (service instance);

j) SLE transfer service production (service production);

k) SLE transfer service provision (service provision);

l) SLE transfer service provision period (provision period).

1.6.1.2 Definitions from the ISO Abstract Service Definitions and Conventions

This Recommended Practice makes use of the following terms defined in reference [19]:

a) initiator;

b) responder.

1.6.1.3 Definitions from SLE Transfer Service Specifications

This Recommended Practice makes use of the following terms defined in references [4], [5],
[6], [7], and [8]:

a) association;

b) communications service;

c) confirmed operation;

d) invocation;

CCSDS 914.0-M-1 Page 1-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

e) parameter (of an operation);

f) port identifier;

g) return;

h) unconfirmed operation.

1.6.1.4 Additional Definitions

1.6.1.4.1 General

For the purpose of this Recommended Practice, the following definitions also apply:

1.6.1.4.2 Component

A software module, providing a well-defined service via a set of interfaces. In this document
the term component is used only to refer to the API components defined by this
Recommended Practice.

1.6.1.4.3 Component Interface

An interface exported by a component.

1.6.1.4.4 Component Object

An object within a component that can be accessed by one or more interfaces exported by the
component. Objects providing more than one interface support navigation between these
interfaces.

1.6.1.4.5 Client

A software entity that uses the services of a component or of an object by invocation of the
methods of an interface provided by the component or object. In this Recommended Practice
the qualified term ‘local client’ is used to stress the difference between an interface to a
software entity on the same computer and the interface between an SLE service user and an
SLE service provider.

1.6.1.4.6 Interface

The abstraction of a service that only defines the operations supported by that service, but not
their implementations. The specification of an operation is referred to as a method.

CCSDS 914.0-M-1 Page 1-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1.6.2 NOTES ON TERMINOLOGY

1.6.2.1 General

The following conventions apply throughout this Recommended Practice:

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b) the word ‘should’ implies an optional, but desirable, specification;

c) the word ‘may’ implies an optional specification;

d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

1.6.2.2 Use of the Term ‘Client’

In a complete SLE API, the API Proxy interacts with the API Service Element in the same
process and with a peer proxy across the network. However, the proxy might also be used in
an environment where some other software entity interfaces locally to the proxy and supplies
the interfaces defined for the API Service Element. An example for such a configuration is a
gateway. Therefore, this specification uses the term ‘client’ when referring to the entity with
which the proxy interacts locally.

Where it is necessary to explicitly distinguish between interaction with the peer proxy across
the network and interactions with the client on the local computer, the qualified term ‘local
client’ is used.

1.6.2.3 Use of the Term ‘Release’

The term ‘release an object’ (or a resource) must be understood to mean that all actions shall
be taken that are required to free the allocated memory or other operating system resources.
For interfaces defined in this specification, this means that the method Release() must be
called for every reference to an interface that a component holds. (See annex D for a
description of the method Release() and of the reference counting scheme.)

1.7 REFERENCES

The following documents contain provisions which, through reference in this text, constitute
provisions of this Recommended Practice. At the time of publication, the editions indicated
were valid. All documents are subject to revision, and users of this Recommended Practice
are encouraged to investigate the possibility of applying the most recent editions of the
documents indicated below. The CCSDS Secretariat maintains a register of currently valid
CCSDS documents.

NOTE – A list of informative references is provided in annex J.

CCSDS 914.0-M-1 Page 1-9 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

[1] Time Code Formats. Recommendation for Space Data System Standards, CCSDS
301.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, January 2002.

[2] Cross Support Concept — Part 1: Space Link Extension Services. Report Concerning
Space Data System Standards, CCSDS 910.3-G-3. Green Book. Issue 3. Washington,
D.C.: CCSDS, March 2006.

[3] Cross Support Reference Model—Part 1: Space Link Extension Services.
Recommendation for Space Data System Standards, CCSDS 910.4-B-2. Blue Book.
Issue 2. Washington, D.C.: CCSDS, October 2005.

[4] Space Link Extension—Return All Frames Service Specification. Recommendation for
Space Data System Standards, CCSDS 911.1-B-2. Blue Book. Issue 2. Washington,
D.C.: CCSDS, December 2004.

[5] Space Link Extension—Return Channel Frames Service Specification.
Recommendation for Space Data System Standards, CCSDS 911.2-B-1. Blue Book.
Issue 1. Washington, D.C.: CCSDS, December 2004.

[6] Space Link Extension—Return Operational Control Fields Service Specification.
Recommendation for Space Data System Standards, CCSDS 911.5-B-1. Blue Book.
Issue 1. Washington, D.C.: CCSDS, December 2004.

[7] Space Link Extension—Forward CLTU Service Specification. Recommendation for
Space Data System Standards, CCSDS 912.1-B-2. Blue Book. Issue 2. Washington,
D.C.: CCSDS, December 2004.

[8] Space Link Extension—Forward Space Packet Service Specification. Recommendation
for Space Data System Standards, CCSDS 912.3-B-1. Blue Book. Issue 1.
Washington, D.C.: CCSDS, December 2004.

[9] Space Link Extension—Internet Protocol for Transfer Services. Recommendation for
Space Data System Standards, CCSDS 913.1-B-1. Blue Book. Issue 1. Washington,
D.C.: CCSDS, September 2008.

[10] Space Link Extension—Application Program Interface for Return All Frames Service.
Specification Concerning Space Data System Standards, CCSDS 915.1-M-1. Magenta
Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

[11] Space Link Extension—Application Program Interface for Return Channel Frames
Service. Specification Concerning Space Data System Standards, CCSDS 915.2-M-1.
Magenta Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

[12] Space Link Extension—Application Program Interface for Return Operational Control
Fields Service. Specification Concerning Space Data System Standards, CCSDS
915.5-M-1. Magenta Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

CCSDS 914.0-M-1 Page 1-10 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 1-11 October 2008

[13] Space Link Extension—Application Program Interface for the Forward CLTU Service.
Specification Concerning Space Data System Standards, CCSDS 916.1-M-1. Magenta
Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

[14] Space Link Extension—Application Program Interface for the Forward Space Packet
Service. Specification Concerning Space Data System Standards, CCSDS 916.3-M-1.
Magenta Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

[15] Information Technology—Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation. International Standard, ISO/IEC 8824-1:2002. 3rd ed. Geneva: ISO,
2002.

[16] Information Technology—ASN.1 Encoding Rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER). International Standard, ISO/IEC 8825-1:2002. 3rd ed. Geneva: ISO, 2002.

[17] Information Technology—Open Systems Interconnection—The Directory: Models.
International Standard, ISO/IEC 9594-2:1998. 3rd ed. Geneva: ISO, 1998.

[18] Information Technology—Open Systems Interconnection—The Directory: Public-Key
and Attribute Certificate Frameworks. International Standard, ISO/IEC 9594-8:2001.
4th ed. Geneva: ISO, 2001.

[19] Information Technology—Text Communication—Message-Oriented Text Interchange
Systems (MOTIS)—Part 3: Abstract Service Definition Conventions. International
Standard, ISO/IEC 10021-3:1990 [Withdrawn]. Geneva: ISO, 1990.

[20] Programming Languages—C++. International Standard, ISO/IEC 14882:2003. 2nd
ed. Geneva: ISO, 2003.

[21] Secure Hash Standard. Federal Information Processing Standards Publication 180-1.
Gaithersburg, MD: NIST, 1995.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2 DESCRIPTION OF THE SLE API

2.1 INTRODUCTION

2.1.1 SCOPE OF THE MODEL

The intention of this section is to provide a high-level yet precise description of the API
covering all API components and their interaction. For this purpose, the section uses an
object model presented in the Unified Modeling Language (UML). Detailed specifications
for each of the components are provided in section 3, which references the concepts, objects,
and interfaces described by this model.

Note that the material presented here is an API design, to the extent that the API is broken
down into components and the interfaces and interactions of these components are specified.
However, this model (i.e., design) is restricted to what must be defined to ensure co-
operation between components and excludes specification of the internal design of
components.

The model defines:

a) the runtime components, from which the API is constructed;

b) the externally visible logical architecture of the API in terms of:

1) the interfaces that are exposed by the components;

2) the functionality to which these interfaces provide access; and

3) the behavior of the operations defined by the interfaces.

In order to specify the externally visible architecture, the model defines logical entities below
the level of runtime components. These entities are to be understood as abstract analysis
objects. It is not the intention to prescribe the structure defined by these objects for an
implementation in any way. The only requirement for an implementation is to provide the
interfaces specified with the functionality and the behavior described by the analysis objects.

Some minor semantic extensions to UML have been defined to highlight the difference
between those aspects of the model that must be implemented as specified and those aspects
that are required only for a complete and unambiguous description. Subsection 2.2 provides
details of how UML is used in this model.

This section contains only a summary description of interfaces. A complete specification of
the methods and types is provided in annex A for all interfaces that are not service type
specific. Service type-specific interfaces are detailed in supplemental Recommended
Practice documents defining service-specific APIs.

CCSDS 914.0-M-1 Page 2-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.1.2 PRESENTATION OF THE MODEL

The API model is presented as follows:

Subsection 2.2 describes how UML is used for this model. It does not provide an
introduction to UML. For a description of UML, the reader is asked to refer to the UML
specification (see reference [J6]), or to one of the textbooks on the subject (see references
[J7] and [J8]).

Subsection 2.3 describes the ‘logical view’. It contains a subsection for each of the API
components:

a) API Proxy (see 2.3.2);

b) API Service Element (see 2.3.3);

c) SLE Operations (see 2.3.6); and

d) SLE Utilities (see 2.3.7).

Subsection 2.3.4 describes interfaces that must be implemented by more than one component
and describes the application interface to the API. The logical view is complemented by
annex F providing an overview of how the components interact.

2.2 SPECIFICATION METHOD AND NOTATION

2.2.1 INTRODUCTION

The architectural model for the SLE API is defined using the Unified Modeling Language
(UML) as defined in reference [J6]. This subsection describes some specific aspects of how
UML is used in this Recommended Practice.

A component in UML models a runtime object, e.g., an executable file, a dynamically linked
library, or similar operating system objects. Therefore, the relationships that can be defined
for a component in UML are limited:

a) a component can implement (‘realize’) and export an interface;

b) a component can depend on another component (more precisely on the interface
exported by another component).

In this Recommended Practice, the UML component is used to refer to a component that:

a) is delivered as one or more linkable libraries;

b) is instantiated by a global ‘creator function’ defined in annex D;

c) is substitutable by a different component providing the same interfaces.

CCSDS 914.0-M-1 Page 2-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

This specification requires these characteristics only for the top-level components API Proxy,
API Service Element, SLE Operations, and SLE Utilities. These components are
considerably complex and provide a rather large number of interfaces. In order to specify
these interfaces, additional model constructs are needed. Following the general UML
approach, this Recommended Practice uses UML classes with specific stereotypes to define
special model objects. The specialized model objects are:

a) Interface;

b) Component Class (CoClass);

c) Component Internal Class; and

d) Entity.

They are shown in figure 2-1 together with some important relationships addressed later in
this section. In addition, the model uses the UML utility class to represent functions that are
not bound to any specific class.

Entity
<<Entity>>

ClassUtility

Component Interface
<<Interface>>

generalisation /
specialisation
relationship

Interface
<<Interface>>

Derived Interface
<<Interface>>

<<Inheritance>>
interface
Inheritance

uses interface

Component Class
<<CoClass>>

instantiates

implements /
exports interface

Specialised Class
<<CoClass>>

Component Internal Class
<<Internal>>

containment / aggregation

Figure 2-1: UML Stereotypes Used in This Recommended Practice

CCSDS 914.0-M-1 Page 2-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.2.2 INTERFACE

The stereotype ‘Interface’ is defined by the UML specification. In this model it is used to
identify a component interface. In C++ an interface is implemented as a class containing no
data members and only public, pure virtual function members. According to the simple
component model defined in annex D, all interfaces inherit the interface IUnknown. This
fact is not explicitly shown in the diagrams.

An interface is displayed as a UML class with the stereotype <<Interface>>. The operations
defined by the interface may or may not be shown, depending on the purpose of the specific
diagram.

Where explicit public interface inheritance is required, this is indicated by the stereotype
<<Inheritance>>. Generalization relationships that do not show this stereotype do not
require an implementation using inheritance.

2.2.3 COMPONENT CLASS

A component class is a model object that specifies some functionality to be provided by a
component. It is also used to describe navigational relationships between interfaces. The
only implementation requirements related to component classes are the following. (For a
description of the interface IUnknown and the method QueryInterface() see the
‘Simple Component Model’ in annex D.)

a) A component must export all interfaces specified for a component class it
implements.

b) It must be possible to navigate between all interfaces specified for a component class
and for component classes to which a generalization interface exists using
QueryInterface().

c) For every non-abstract component class (except the ‘main’ class for a component) the
model defines one (or more) interfaces by which a new instance can be obtained.
These interfaces must be supported.

d) When more than one instance of a component class exist, distinct references for the
associated interfaces must be provided. The general requirement of the component
model, that a query for the interface IUnknown on the same instance always returns
the same pointer, applies.

Beyond these requirements, this Recommended Practice does not prescribe how the
functionality defined for component classes is implemented. In particular, the generalization
relationships shown in the model do not require implementation via inheritance. In fact,
there need not be any equivalence between the classes within a component and the
component classes shown in this model.

CCSDS 914.0-M-1 Page 2-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A component class is defined as abstract, when no instances of the class are created. Such
component classes define common functionality, behavior, and interfaces that are provided
by more than one derived class.

A runtime component contains a single ‘main’ class and exposes a special ‘creator function’
that can create an instance of that class. This creator function must be a global symbol in the
library that implements the component. In the diagrams of this model the creator function is
represented by a UML Utility Class, which has an association ‘instantiates’ to the ‘main’
class.

The model uses the UML dependency (or ‘uses’) relationship between component classes
and interfaces to describe how components are linked via their interfaces. The only
requirement for an implementation is that the component implementing the functionality
associated with the component class use the specified interfaces for the purpose identified in
the model.

In a few cases, attributes are shown for component classes. Attributes are strictly analysis-
model constructs to highlight characteristics of a class or options provided by a class. They
are not to be understood to define data. Attributes shown in the model may not even be
accessible at all.

A component class is displayed as a UML class with the stereotype <<CoClass>>. If the
component class is abstract, its name is displayed in italic typeface.

2.2.4 COMPONENT INTERNAL CLASS

Component internal classes are used to describe features that are expected from a component,
but which do not result in any externally visible interface. Component internal classes are
pure model objects. This specification does not prescribe how the features presented by
these objects are implemented.

A component internal class is presented as a UML class with the stereotype <<Internal>>.
An internal class does not implement an interface. Beside this constraint, all relationships for
classes can be used.

2.2.5 ENTITY

In some cases, it is necessary to identify use of an interface by some entity, which is
otherwise unspecified. For this purpose, the model object ‘Entity’ is used. An entity is
displayed as a UML class with the stereotype <<Entity>>. The only relationship an entity
can have is a dependency relationship to an interface. No further semantics are associated
with an entity.

CCSDS 914.0-M-1 Page 2-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.2.6 NAMING CONVENTIONS

2.2.6.1 Component Classes

Because component classes are not expected to be visible in source code, their names do not
adhere to the syntax of identifiers in programming languages.

The names of component classes that are independent of service types are not specifically
prefixed. Names of classes for which a special version must be provided for every service
type are prefixed with ‘<SRV>’.

2.2.6.2 Interfaces

Interfaces adhere to the syntax of C/C++ identifiers. Except for diagrams, interface names
and method names are displayed in mono-space font.

Following Component Object Model (COM) conventions (see reference [J5]), the name of an
interface always starts with a capital ‘I’. Interfaces that are independent of specific SLE
service types are prefixed with ISLE_. Names of interfaces, which are specific for service
types, are prefixed with I<SRV>. These interfaces are defined in supplemental
Recommended Practice documents for service-specific APIs, where <SRV> is replaced by
the abbreviation for the service type. Readability of the name following the prefix can be
improved using upper and lower case letters. The underscore character is reserved for
separation of prefixes from the name. It is not used in the name itself.

Examples: ISLE_ProxyAdmin
ISLE_ServiceInform
I<SRV>_SIAdmin becomes, e.g., IFSP_SIAdmin or IRAF_SIAdmin

2.2.6.3 Entities and Component Internal Classes

Because the objects are pure modeling constructs and are not expected to be visible in source
code, their names do not adhere to the syntax of identifiers in programming languages and no
special naming conventions are applied.

2.2.7 DYNAMIC MODELING

The API requires implementation of a number of state machines. Because these comprise a
considerable number of states and events, this Recommended Practice uses state tables
instead of the state diagrams foreseen by UML. Because implementation of these state tables
is mandatory, they have been placed in the prescriptive part of this Recommended Practice.

CCSDS 914.0-M-1 Page 2-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3 LOGICAL VIEW

2.3.1 STRUCTURE

The logical view of the API is partitioned into the packages shown in figure 2-2, which also
displays the dependencies between these packages. Dependencies on the package SLE
Utilities are not shown in order to avoid overloading of the diagram.

SLE Application SLE Utilities

API Service
Element

API Proxy

SLE OperationsCommon Control
Interfaces

Figure 2-2: Top Level Decomposition of the API

The following packages exist:

a) API Proxy
The package contains the component classes that define the component API Proxy as
well as interfaces exported only by the Proxy.

b) API Service Element
The package contains the component classes that define the component API Service
Element as well as interfaces exported only by the API Service Element.

c) Common Control Interfaces
The package specifies some interfaces that are supported by the API Proxy and the
API Service Element.

CCSDS 914.0-M-1 Page 2-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

d) SLE Application
The package defines component classes that are assumed to be part of the application
software. These component classes export the interfaces that must be made available
by the application.

e) SLE Operations
The package specifies the interfaces for operation objects implemented by the
associated component and used for SLE transfer service interfaces.

f) SLE Utilities
The package defines a small set of generally useful classes and their interfaces. The
interfaces of these utility classes are used by interfaces throughout the model.

2.3.2 PACKAGE API PROXY

2.3.2.1 Overview

The API Proxy provides all functionality that must be implemented in a technology-specific
manner and shields its clients from all technology-specific aspects. In addition, the Proxy
implements access control on system level and authentication of the peer identity. Its
structure is shown in figure 2-3.

The component class API Proxy is responsible for configuration, initialization, and
management of the Proxy component and the data communication system. The
configuration and initialization is performed using the interface ISLE_ProxyAdmin.

Communication between an SLE service user and an SLE service provider is handled by the
class Association via the exported interface ISLE_SrvProxyInitiate and the
complementary interface ISLE_SrvProxyInform supplied by the client. Associations
can be created via the interface ISLE_AssocFactory.

Associations are distinguished according to the role they play in the BIND and UNBIND
operation. Initiating associations invoke BIND and UNBIND operations, whereas
responding associations accept incoming BIND and UNBIND invocations. These
specialized classes differ in their behavior but do not expose any interfaces in addition to
those inherited from the abstract class Association.

The PDU Translator is responsible for translation of the operation parameters between the
syntax defined for the API and the syntax and encoding used for transfer. The abstract class
PDU Translator handles common PDUs for association management, while a service-specific
translator handles service-specific PDUs. It is the only element in the proxy that depends on
the SLE service type.

The proxy and associations support logging and diagnostic traces using the interfaces
ISLE_Reporter and ISLE_Trace provided by the application. Diagnostic traces can be
switched on and off via the interface ISLE_TraceControl exported by the API Proxy
and by the class Association.

CCSDS 914.0-M-1 Page 2-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – All classes in the package API Proxy use the interfaces of operation objects and
of utility objects. This fact is not specifically mentioned in the following
description.

ISLE_ProxyAdmin
<<Interface>>

ISLE_AssocFactory
<<Interface>>

ISLE_Sequential
(from Common Control Interfaces)

<<Interface>>
ISLE_Concurrent

(from Common Control Interfaces)

<<Interface>>

At least one of these interfaces
and the associated behaviour
must be supported

ISLE_SrvProxyInitiate
<<Interface>>

ISLE_SrvProxyInform
(from API Service Element)

<<Interface>>

ISLE_Locator
(from API Service Element)

<<Interface>>

Initiating Association
<<Internal>>

Responding Association
<<Internal>>

<SRV> PDU Translator
<<Internal>>

API Proxy Creator
<Product>_createProxy()

API Proxy
Bind Roles Supported
Protocol ID

<<CoClass>>

instantiates

PDU Translator
<<Internal>>

Association
<<CoClass>>

1

0..*

1

0..*

manages

1

Service Type

1

1

1

Service Type

uses

Figure 2-3: Structure of the Package API Proxy

CCSDS 914.0-M-1 Page 2-9 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Association
<<CoClass>>

API Proxy
<<CoClass>>

0..*

1

0..*

1

managesISLE_TraceControl
(from Common Control Interfaces)

<<Interface>>

ISLE_Reporter
(from SLE Application)

<<Interface>>

ISLE_Trace
(from SLE Application)

<<Interface>>

Figure 2-4: Reporting and Tracing by the Proxy

2.3.2.2 Component Class API Proxy

2.3.2.2.1 General

The API Proxy provides management of the communications infrastructure and of
associations. The communications technology and the specific mapping of SLE transfer
services to that technology by a proxy implementation is identified by a ‘Protocol ID’,
available via the interface ISLE_ProxyAdmin.

In general, a proxy supports initiating associations and responding associations. However, an
implementation may support only one of these roles. The ‘bind roles’ actually supported are
defined by the attribute ‘Bind Roles Supported’. A proxy supporting associations in the
responder role listens for incoming connection requests on the network interface.

A single instance of this class exists within one instance of the component API Proxy.

2.3.2.2.2 Responsibilities

2.3.2.2.2.1 Configuration and Initialization of the Proxy Component

After creation the proxy must be configured and initialized using the interface
ISLE_ProxyAdmin. This action includes configuration and initialization of the
communications infrastructure. All static configuration parameters needed for this purpose
are specified in the configuration database, defined in 2.3.2.8.

CCSDS 914.0-M-1 Page 2-10 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

An implementation may require that part of the required infrastructure has already been
initialized, e.g., at system start-up, or that a global infrastructure exists, e.g., for access to a
directory system. Such prerequisites must be documented for every implementation.

2.3.2.2.2.2 Dynamic Port Registration and De-registration

The proxy performs dynamic registration of responder ports on request of a client via the
interface ISLE_ProxyAdmin. Port registration includes all actions that may be required
by a technology to register addresses, export address related information to a directory
system, or publish a port by other means. Port registration has the effect that requests sent to
the port are correctly routed to the proxy that registered it.

If port registration is not needed for the technology used, or for the current configuration of
the proxy, the proxy ignores the request.

2.3.2.2.2.3 Management of Initiating Associations

The proxy creates and initializes initiating associations for a specified service type on request
of its client via the interface ISLE_AssocFactory. If the proxy does not support the
requested service type or does not support associations in the initiator role, it rejects the
request.

The proxy keeps a reference to the associations until the client requests it to destroy the
association. If the association is not in an unbound state, the proxy rejects this request.
Otherwise, it releases all resources that may be allocated to the association and performs all
actions required to delete the association.

2.3.2.2.2.4 Management of Responding Associations

A proxy that supports associations in the role of a BIND responder starts listening for
incoming BIND invocations as soon as the start method of one of the control interfaces has
been called, or when the port has been registered. When the proxy receives a BIND
invocation, it creates a new responding association to process the BIND invocation.

When responding association terminates (following UNBIND, PEER-ABORT, or after a
failure reported by the data communication service), the proxy releases all resources
allocated to the association and deletes the association object.

2.3.2.2.2.5 Logging and Notification

The proxy generates log records for important events and enters them to the system log using
the interface ISLE_Reporter provided by the application. For specific events that require
immediate attention, the proxy notifies the application using the method Notify() in the
interface ISLE_Reporter.

CCSDS 914.0-M-1 Page 2-11 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.2.2.6 Diagnostic Traces

The proxy generates trace records for events that are not related to any particular association
and passes them to the interface ISLE_Trace provided by the application. It supports the
interface ISLE_TraceControl to switch tracing on and off. The proxy forwards all
requests received via this interface to all associations currently managed.

2.3.2.2.3 Attributes

2.3.2.2.3.1 Protocol ID

Identifies the technology and specific mapping of SLE transfer services to that technology.

2.3.2.2.3.2 Bind Roles Supported

INITIATOR the proxy is capable to support associations in the role of a bind initiator;
RESPONDER the proxy is capable to support associations in the role of a bind responder;
ALL the proxy is capable to support associations in the role of an initiator as

well as associations in the role of a responder.

2.3.2.2.4 Behavior and Use

When the method Configure() is called on the interface ISLE_ProxyAdmin, the
proxy checks the information passed and performs all actions required for configuration of
the proxy and the communications service. Errors are logged and result in an error code
returned to the caller. When the component has been configured successfully, the proxy
returns a positive result code, indicating that it is ready for operation. However, it starts
processing only when the start method is called on one of the control interfaces
ISLE_Sequential or ISLE_Concurrent (see 2.3.4). This implies that a proxy
supporting associations in the responder role starts listening for incoming BIND invocations
only after call of the start method.

When the terminate method of the control interface is called, the proxy terminates all threads,
if applicable, such that an orderly termination of the application is possible. If any
associations are still active when termination is requested, the proxy aborts these
associations. A proxy must expect that other proxies using the same communication
infrastructure exist on the system and must make sure that their operation is not affected by
termination activities.

NOTE – The terminate method is either TerminateSequential() of the interface
ISLE_Sequential, or TerminateConcurrent() of the interface
ISLE_Concurrent, depending on the behavior supported by the proxy.

CCSDS 914.0-M-1 Page 2-12 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The proxy provides the method ShutDown() to shut it down on its administrative interface
ISLE_ProxyAdmin. When that method is called it releases all interfaces of other
components it still holds, frees all resources, and deletes all internal objects.

2.3.2.2.5 Exported Interfaces

Interface Defined in Package Purpose

ISLE_ProxyAdmin API Proxy configuration, initialization, dynamic port
registration, and shutdown

ISLE_Concurrent Common Control
Interfaces

start and termination of operations for
concurrent behavior

ISLE_Sequential Common Control
Interfaces

start and termination of operations for
sequential behavior

ISLE_AssocFactory API Proxy creation and deletion of associations in the
initiator role

ISLE_TraceControl Common Control
Interfaces

start and stop of diagnostic traces

2.3.2.2.6 Dependencies

Interface Defined in Package Purpose

ISLE_Reporter SLE Application logging and notification

ISLE_Trace SLE Application tracing

ISLE_Locator API Service Element indication of an incoming BIND invocation to
the client (not shown in the diagram)

ISLE_OperationFactory SLE Operations creation of operation objects (not shown in the
diagram)

ISLE_UtilFactory SLE Utilities creation of utility objects (not shown in the
diagram)

2.3.2.3 Component Class Association

2.3.2.3.1 General

An object of a class derived from the abstract class Association handles a single data
communication association between an SLE service user and an SLE service provider. The
class Association defines those aspects of an association, which are independent of the role it
plays in the BIND and UNBIND operation. An association is independent of the SLE
service type. Service type-specific aspects are handled by the class PDU Translator, to which
the association passes all operation invocations and returns for checking and for encoding
and decoding.

CCSDS 914.0-M-1 Page 2-13 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

An association object does not distinguish between the SLE service user role and the SLE
service provider role and accepts any PDU that is defined for a given SLE service type.
Checking for validity of PDUs for a given role must be performed by the client of the
association.

2.3.2.3.2 Responsibilities

2.3.2.3.2.1 Mapping of Port Identifiers

The association maps the logical port identifiers defined by the CCSDS Recommended
Standards for SLE transfer services to technology-specific addresses. The mapping is
defined in the configuration database.

2.3.2.3.2.2 Processing of SLE Protocol Data Units

Associations accept operation objects holding SLE invocation and return parameters via the
interface ISLE_SrvProxyInitiate, pass them to the PDU Translator for checking and
encoding, and transfer the encoded PDU to the peer proxy. They receive SLE PDUs from
the peer proxy, pass them to the PDU Translator for checking and decoding, and forward the
resulting operation object to the client via the interface ISLE_SrvProxyInform.

2.3.2.3.2.3 Basic SLE Protocol Execution

Association objects implement a basic subset of the state tables defined for SLE services.
The state table for associations is specified in section 4.

2.3.2.3.2.4 Authentication

For incoming PDUs, the association determines the required authentication mode defined in
the configuration database for the peer application. If authentication is required it uses the
interface ISLE_SecAttributes provided by the component SLE Utilities to check the
credentials transmitted in the PDU. If authentication fails the association ignores the PDU.
For outgoing PDUs, the association generates the credentials using the security attributes of
the local application in its configuration database.

2.3.2.3.2.5 Monitoring of the State of the Data Communication Connection

The association monitors the state of the data communication connection it uses and informs
its client if the connection breaks down. The maximum delay between the failure and the
report is specified in the proxy configuration file.

CCSDS 914.0-M-1 Page 2-14 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.3.2.6 Queuing of Outbound PDUs

The association queues a maximum number of PDUs if these cannot be transmitted
immediately. A positive response to a transmission request by the client guarantees that the
PDU has been queued for transmission. The maximum size of the queue is defined in the
proxy configuration file. If requested by the client (see the interface
ISLE_SrvProxyInitiate) the association notifies the client when a PDU has actually
been transmitted. If the queue of outgoing PDUs is full, the association rejects further
transmission requests.

2.3.2.3.2.7 Removal of Transfer Buffer PDUs

On request by the client, the association removes all PDUs of the type TRANSFER-BUFFER
for which transmission has not yet started from the queue and releases associated resources.
It informs the client whether such PDUs have been discarded.

2.3.2.3.2.8 Limiting Inbound Data Traffic

The association ensures that the number of PDUs received from the network and not yet
passed to its client does not exceed a maximum number N1 defined in the proxy
configuration file. Of these a maximum number N2 ≤ N1 are allowed to be PDUs of the type
TRANSFER-DATA invocation or TRANSFER-BUFFER invocation. The number N2 is
also defined in the proxy configuration file. If either of these limits is exceeded the
association does not accept further data from the network making sure that back-pressure is
built up.

2.3.2.3.2.9 Logging and Notification

The association and its derived classes generate log records for important events and enter
them to the system log using the interface ISLE_Reporter provided by the application.
For specific events that require immediate attention, the association notifies the application
using the method Notify() in the interface ISLE_Reporter.

2.3.2.3.2.10 Diagnostic Traces

The class Association and its derived classes generate trace records and pass them to the
interface ISLE_Trace provided by the application. It supports the interface
ISLE_TraceControl to switch tracing on and off.

CCSDS 914.0-M-1 Page 2-15 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.3.3 Exported Interfaces

Interface Defined in Package Purpose

ISLE_SrvProxyInitiate API Proxy passing of SLE PDUs for transfer

ISLE_TraceControl Common Control
Interfaces

start and stop of diagnostic traces

2.3.2.3.4 Dependencies

Interface Defined in Package Purpose

ISLE_SrvProxyInform API Service Element passing of SLE PDUs received from the
network

ISLE_Reporter SLE Application logging and notification

ISLE_Trace SLE Application tracing

2.3.2.4 Internal Class Initiating Association

2.3.2.4.1 General

An initiating association accepts requests to invoke the BIND operation and the UNBIND
operation from its local client. If the association receives a BIND or UNBIND invocation
PDU from the peer proxy, it aborts the data communication association with the diagnostic
‘protocol error’.

2.3.2.4.2 Responsibilities

2.3.2.4.2.1 Association Establishment

When receiving a BIND invocation from its local client, the initiating association establishes
a data communication association with the peer proxy using technology-specific means and
transmits the BIND invocation. It completes the association establishment procedure when it
receives the BIND return from the peer proxy. If the BIND return PDU contains a positive
result, the association is established and the state is set to ‘bound’. If the BIND return PDU
carries a negative result, the association is not established and the state is set to ‘unbound’.
The association informs its client by forwarding the operation object with the return
parameters received from the peer proxy.

The association ensures that the BIND operation is not performed on an established
association or during association release and is not re-invoked during association
establishment. It also ensures that the BIND operation is performed according to the
protocol defined by the CCSDS Recommended Standards for SLE transfer services.

CCSDS 914.0-M-1 Page 2-16 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.4.2.2 Association Release

When receiving an UNBIND invocation from its local client, the association object forwards
the invocation to the peer proxy and initiates termination of the data communication
association by technology-specific means. It completes the association release procedure
when receiving the UNBIND return, by setting its state to ‘unbound’ and forwarding the
return to its client.

The association ensures that the UNBIND operation is performed only on an established
association and is not re-invoked during association release. It also ensures that UNBIND
operation is performed according to the protocol defined by the CCSDS Recommended
Standards for SLE transfer services.

2.3.2.4.2.3 Access Control

As part of the BIND operation the initiating association locates the peer application in the
configuration database of the proxy using the responder identifier in the BIND operation
object. When receiving the BIND return it verifies that the responder identifier is the one
expected and aborts if that is not the case. This test is performed before authentication, if
authentication is required for the peer application.

2.3.2.5 Internal Class Responding Association

2.3.2.5.1 General

A responding association processes BIND invocations received from the peer proxy and
responds to UNBIND invocations issued by the peer proxy. It rejects any BIND or UNBIND
invocations that might be requested by its local client.

2.3.2.5.2 Responsibilities

2.3.2.5.2.1 Association Establishment

An object of the class Responding Association is created by the API Proxy in order to
process a received BIND invocation (see 2.3.2.2.2.4). It performs all initial checks on the
BIND invocation defined in this section. It then informs its client via the interface
ISLE_Locator provided as part of the proxy configuration, passing it a reference to its
interface ISLE_SrvProxyInitiate and to the operation object holding the BIND
invocation parameters.

If the locator interface returns a reference to the interface ISLE_SrvProxyInform, the
association forwards the BIND invocation via that interface. If the locator returns an error,
the association generates a BIND return PDU with a negative result and a diagnostic
corresponding to the error. It transmits the PDU to the peer proxy and terminates the data
communication association.

CCSDS 914.0-M-1 Page 2-17 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The association completes the association establishment procedure when it receives the
BIND return from its local client. If the BIND return PDU contains a positive result, the
association is established and the state is set to ‘bound’. If the BIND return PDU carries a
negative result, the association is not established. In both cases, the association forwards the
BIND return to the peer proxy.

If the association receives a BIND invocation from the peer proxy on the data
communication association it handles, it aborts the association with the diagnostic ‘protocol
error’. The association also ensures that the BIND operation is performed according to the
protocol defined by the CCSDS Recommended Standards for SLE transfer services.

2.3.2.5.2.2 Association Release

When receiving an UNBIND invocation from the peer proxy, the association forwards the
invocation to its client. It completes the association release procedure when it receives the
UNBIND return from its local client.

The association ensures that the UNBIND operation is performed only on an established
association and is not re-invoked during association release. It also ensures that UNBIND
operation is performed according to the protocol defined by the CCSDS Recommended
Standards for SLE transfer services.

2.3.2.5.2.3 Access Control

When receiving a BIND invocation, the association verifies that the initiator is defined as a
peer application in the configuration database of the proxy. If that is not the case, it responds
with a BIND return containing a negative result and the diagnostic ‘access denied’.

2.3.2.5.2.4 Handling of Service Types and Version Numbers

When receiving a BIND invocation, the association checks that the requested service type is
defined in the configuration database of the proxy and that the version number for that type
can be supported. If that is not the case, it responds with a BIND return containing a
negative result and the appropriate diagnostic.

2.3.2.5.3 Dependencies

Interface Defined in Package Purpose

ISLE_Locator API Service Element indication of an incoming BIND invocation to
the client

CCSDS 914.0-M-1 Page 2-18 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.6 Internal Class PDU Translator

2.3.2.6.1 General

The class PDU Translator translates SLE operation parameters between the syntax used in
the API and the syntax required for communication with the peer proxy. The base class
handles the SLE operations BIND, UNBIND, and PEER-ABORT, which are identical for all
service types. Service-specific operations are handled by the derived classes.

2.3.2.6.2 Responsibilities

2.3.2.6.2.1 Association of Returns with Invocations

The PDU Translator receives operation objects from the association. For invocations of
confirmed operations by the local client, it stores a reference to the operation object until the
return from the peer proxy arrives or the association is aborted. When receiving a PDU that
contains a return, the PDU Translator locates the operation object holding the invocation by
means of the invocation identifier. The PDU Translator verifies that the invocation and
return are of the same operation type. If it cannot locate the invocation, it informs the
association, which aborts with the diagnostic ‘unsolicited invocation identifier’.

NOTE – The processing of invocations of confirmed operations received from the peer
proxy is described in 2.3.2.6.2.3.

It is noted that the confirmed operations BIND and UNBIND do not carry an invocation
identifier. Because only a single return can be outstanding for these operations at any time,
association of the return with the invocation is possible without the invocation identifier.

2.3.2.6.2.2 Encoding of PDUs

A PDU Translator extracts the invocation or return parameters from the operation objects
passed by the association, encodes them as required by the technology mapping, builds the
protocol data unit, and passes it back to the association for transmission.

2.3.2.6.2.3 Decoding of PDUs

The PDU Translator decodes PDUs received from the peer proxy and extracts the operation
parameters. For invocations, the PDU Translator creates an operation object using the
interface ISLE_OperationFactory, stores the invocation parameters to this object, and
passes it to the association for further processing. For returns, it stores the return parameters
to the operation object, which holds the associated invocation.

CCSDS 914.0-M-1 Page 2-19 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.7 Internal Class <SRV> PDU Translator

A class <SRV> PDU Translator exists for every SLE service type supported by the proxy.
For operation objects and PDUs passed to the PDU Translator, the class checks whether
these are defined for the service type. If the operation is defined for the service type, the
class performs encoding and decoding for these operations as described in 2.3.2.6.

2.3.2.8 Proxy Configuration Database

2.3.2.8.1 General

Operation of the API Proxy in a specific deployment environment is controlled by
parameters in a configuration database. The structure of this database is implementation
specific. It could consist of one or more files or could be implemented using directory
systems or some management database. The configuration file passed to the proxy as part of
the configuration can contain the complete database or only a reference that enables the
proxy to access the database.

Also, the content of the database is largely implementation specific. Information, which
must be part of the configuration database, is presented in figure 2-5. The objects shown in
the figure are not complete. Information objects not shown in the figure are represented by
the attribute ‘Configuration Parameters’ of the class Proxy Config Database. A complete list
of required objects may be found in section 3.

Peer Application
Identifier
Password
Authentication Mode

<<Internal>>

Supported Servcie
Servcie Type
Version List

<<Internal>>

Proxy Config Database
Configuration Parameters

<<Internal>> LocalApplication

1

1..*1..*

1

1
Identifier
Password

<<Internal>>

1..* 11..* 1 11 1

11

Responder Port
Identifier
Address

<<Internal>> 1..*

11

1..*

local port

1..*1..*

Figure 2-5: Configuration Database of the Proxy

CCSDS 914.0-M-1 Page 2-20 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.8.2 Local Application

The database contains information concerning the local SLE application. The information
includes the identifier (user name) and a password for authentication. For proxies supporting
associations in the responder role, the database also holds information related to local ports,
on which the proxy shall accept incoming BIND invocations. The number of ports that can
be supported is implementation defined.

2.3.2.8.3 Peer Application

The database contains a list of peer applications, which are allowed to access the system.
The list includes service users that may access a service provider and service providers,
which the local application may use. For every peer application, the database contains the
identifier, the required authentication mode (no authentication, authentication for BIND only,
authentication of all PDUs) and a password for authentication.

2.3.2.8.4 Port

For all responder ports (local and remote) the database contains a logical port identifier and
the technology-specific address information associated with that name.

2.3.2.8.5 Supported Services

The database contains a list of the service types that are supported by all API components in
an installation, and for each type, the list of version numbers that are supported by all API
components.

2.3.2.8.6 Interfaces Defined by the Package

Name Description

ISLE_ProxyAdmin The interface is provided to configure and initialize the proxy
component passing it the pointers to interfaces of other components it
needs operationally. In addition, the interface comprises the methods
for port registration and de-registration and for shutting down of the
proxy.

ISLE_AssocFactory The interface supports creation of initiating association objects for a
specified SLE transfer service type. A pointer to the client interface
must be passed to the creation function. The interface also provides a
method to request the proxy to destroy an association object that is no
longer needed.

ISLE_SrvProxyInitiate The interface provides methods to pass SLE operation invocations and
returns for transmission. In addition, it supports the features to request
reporting of actual transfer of a PDU, and to discard PDUs of the type
TRANSFER-BUFFER. The interface is identical for all association roles
(initiator and provider) and all SLE service types.

CCSDS 914.0-M-1 Page 2-21 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3 PACKAGE API SERVICE ELEMENT

2.3.3.1 Overview

The API Service Element implements functionality related to SLE transfer service
provisioning, which can be clearly separated from service production. It provides support for
SLE service provider applications and for SLE service user applications. The structure of the
API Service Element is shown in figure 2-6.

The component class API Service Element is responsible for configuration, initialization, and
management of the component. It provides an interface to the application to create and
delete service instances (ISLE_SIFactory) and to the proxy to locate service instances
when receiving a BIND invocation (ISLE_Locator).

CCSDS 914.0-M-1 Page 2-22 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ISLE_SEAdmin
<<Interface>>

ISLE_SIFactory
<<Interface>>

ISLE_Sequential
(from Common Control Interfaces)

<<Interface>>
ISLE_Concurrent

(from Common Control Interfaces)

<<Interface>>

At least one of these interfaces and
the associated beavhiour must be
supported

<SRV> SI User
<<Internal>>

<SRV> SI Provider
<<CoClass>>

ISLE_SrvProxyInform
<<Interface>>

ISLE_ServiceInitiate
<<Interface>>

I<SRV>_SIAdmin
<<Interface>>

ISLE_SrvProxyInitiate
(from API Proxy)

<<Interface>>

ISLE_ServiceInform
(from SLE Application)

<<Interface>>

I<SRV>_SIUpdate
<<Interface>>

ISLE_SIAdmin
<<Interface>>

ISLE_AssocFactory
(from API Proxy)

<<Interface>>

ISLE_Locator
<<Interface>>

ISLE_SIOpFactory
<<Interface>>

API Service Instance
<<CoClass>>

API Service Element
Roles Supported
Provider Initated Bind Supported

<<CoClass>>

1

0..*

1

0..*

manages

API Service Element Creator
<Product>_createServiceElement()

instantiates

SI Provider
<<Internal>>

SI User
<<Internal>>

Figure 2-6: Structure of the Package API Service Element

Individual service instances are handled by the class API Service Instance. During periods in
which an SLE service user and an SLE service provider communicate, the service instance is
linked with an association object in the component API Proxy. It communicates with the
association via the interface ISLE_SrvProxyInitiate and the complementary interface
ISLE_SrvProxyInform. With the application it communicates via the interface
ISLE_ServiceInitiate and the complementary interface ISLE_ServiceInform.

Service instances are distinguished according to the application role they support. The class
SI Provider supports SLE service provider applications and the class SI User supports SLE

CCSDS 914.0-M-1 Page 2-23 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

service user applications. While the behavior of these classes and the operations they support
differ, the externally visible interfaces are identical.

The classes API Service Instance, SI Provider, and SI User are abstract. Service instance
objects support a specific SLE service type represented by the classes <SRV> SI Provider
and <SRV> SI User. The class <SRV> SI User does not export any new interfaces, while
service instances in the provider role support additional service type-specific interfaces for
configuration (I<SRV>_SIAdmin) and for update of service parameters
(I<SRV>_SIUpdate).

API Service Instance
<<CoClass>>

API Service Element
<<CoClass>>

0..*

1

0..*

1

manages

ISLE_TraceControl
(from Common Control Interfaces)

<<Interface>>

ISLE_Reporter
(from SLE Application)

<<Interface>>

ISLE_Trace
(from SLE Application)

<<Interface>>

Figure 2-7: Reporting and Tracing by the Service Element

The service element and service instances support logging and diagnostic traces using the
interfaces ISLE_Reporter and ISLE_Trace provided by the application. Diagnostic
Traces can be switched on and off via the interface ISLE_TraceControl exported by the
API Service Element and by the API Service Instance.

NOTE – All classes in the package API Service Element use the interfaces of operation
objects and of utility objects. This fact is not specifically mentioned in the
following description.

CCSDS 914.0-M-1 Page 2-24 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.2 Component Class API Service Element

2.3.3.2.1 General

The component class API Service Element provides management of service instances. An
implementation of the component can support service instances for the SLE service provider
role and for the SLE service user role or only for one of the roles as indicated by the attribute
‘Roles Supported’. Support for user-initiated binding of service instances is mandatory,
while support for provider-initiated binding is an option. Its support is indicated by the
attribute ‘Provider Initiated Bind Supported’.

NOTE – This version of the Recommended Practice does not support provider-initiated
binding, see 1.2.2 item b). The option and the attribute ‘Provider Initiated Bind
Supported’ are foreseen to allow later extension.

A single instance of this class exists within an instance of the API Service Element
component.

2.3.3.2.2 Responsibilities

2.3.3.2.2.1 Configuration and Initialization of the API Service Element Component

After creation, the API Service Element must be configured and initialized using the
interface ISLE_SEAdmin. All static configuration parameters needed for this purpose are
specified in the configuration database defined in 2.3.3.8.

2.3.3.2.2.2 Control of Proxies

The service element can use several proxies distinguished by the ‘Protocol ID’ of the proxy.
The interface ISLE_SEAdmin provides a method to link proxies to the service element after
configuration. The service element starts and terminates operation of all linked proxies when
its own operation is started or terminated.

For service instances that initiate the BIND operation, the service element selects the proxy
to use by a table in its configuration database, which associates the peer port identifier with
the Protocol ID supported by the proxy.

2.3.3.2.2.3 Management of Service Instances

The service element creates and initializes service instances for a specified service type and a
specified role on request of the application via the interface ISLE_SIFactory. If the
service element does not support the requested service type or role, it rejects the request. If
the service instance shall initiate binding, the application must additionally specify the
version number of the service type.

CCSDS 914.0-M-1 Page 2-25 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The service element keeps a reference to the service instances created until the application
requests it to destroy the service instance. If the service instance is still bound at that time,
the service element rejects the request. Otherwise, it releases all resources that are allocated
to the service instance and performs all actions required to delete the service instance.

2.3.3.2.2.4 Location of Service Instances

The service element provides the interface ISLE_Locator to the proxy to locate requested
service instances when the proxy receives a BIND invocation from the peer system. It uses
the service instance identifier in the BIND invocation passed by the proxy to find the service
instance. If the service instance has been created by the application, the service element
verifies that this service instance is not already bound and that the BIND invocation
parameters are consistent with the configuration of the service instance. If all checks are
passed, it links the service instance with the association and returns a reference to the
interface ISLE_SrvProxyInform of the service instance to the proxy. Otherwise, it
returns an error, instructing the proxy to reject the BIND invocation.

2.3.3.2.2.5 Access Control

For incoming BIND invocations the service element verifies that the initiator identifier in the
BIND invocation matches the peer identifier defined for this service instance. If that is not
the case, it rejects the request and generates an access violation alarm.

2.3.3.2.2.6 Logging and Notification

The service element generates log records for important events and enters them to the system
log using the interface ISLE_Reporter provided by the application. For events that
require immediate attention, the service element notifies the application using the method
Notify() in the interface ISLE_Reporter.

2.3.3.2.2.7 Diagnostic Traces

The service element generates trace records for events that are not related to any particular
service instance and passes them to the interface ISLE_Trace provided by the application.
It supports the interface ISLE_TraceControl to switch tracing on and off. The service
element forwards all requests received via this interface to all service instances currently
managed, and, if requested by the caller, to all proxies that it controls.

NOTE – The interface ISLE_TraceControl of the service element allows setting of
the trace level on a global scope. Individual setting of the trace level of each
service instance is possible using the interface ISLE_TraceControl of the
service instance.

CCSDS 914.0-M-1 Page 2-26 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.2.3 Attributes

2.3.3.2.3.1 Roles Supported

USER the service element supports service instances in the role of an SLE service
user;

PROVIDER the service element supports service instances in the role of an SLE service
provider;

ALL the service element supports service instances in the role of a user as well
as service instances in the role of a provider.

2.3.3.2.3.2 Provider Initiated Bind Supported

Indicates whether the service element supports provider-initiated binding of service
instances.

NOTE – This version of the Recommended Practice does not support provider-initiated
binding; see 1.2.2 item b). The option and the attribute ‘Provider Initiated Bind
Supported’ are foreseen to allow later extension.

2.3.3.2.4 Behavior and Use

When the method Configure() is called on the interface ISLE_SEAdmin(), the service
element checks the information passed, and performs all actions required for configuration of
the component. Errors are logged and result in an error code returned to the caller. When the
component has been configured successfully, the service element returns a positive result
code. Following configuration of the component, the service element must be linked with the
proxies it will use. For this purpose, the service element provides the method AddProxy()
in its administrative interface.

The service element starts processing when the start method is called on one of the control
interfaces ISLE_Sequential or ISLE_Concurrent (see 2.3.4). It then also starts
processing of all linked proxies using the interface selected for control of the proxy.

When the terminate method is called via the control interface, the service element terminates
all threads, if applicable, such that an orderly termination of the application is possible. If
any service instances are still active when termination is requested, the service element
instructs them to abort the association. Finally the service element terminates processing of
all linked proxies.

NOTE – The terminate method is either TerminateSequential() of the interface
ISLE_Sequential, or TerminateConcurrent() of the interface
ISLE_Concurrent, depending on the behavior supported by the service
element.

CCSDS 914.0-M-1 Page 2-27 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The service element provides the method ShutDown() to shut it down on its administrative
interface ISLE_SEAdmin. When that method is called it releases all interfaces of other
components it still holds, frees all resources, and deletes all internal objects.

2.3.3.2.5 Exported Interfaces

Interface Defined in Package Purpose

ISLE_SEAdmin API Service Element configuration, initialization, and shutdown

ISLE_Concurrent Common Control
Interfaces

start and termination of operations for
concurrent behavior

ISLE_Sequential Common Control
Interfaces

start and termination of operations for
sequential behavior

ISLE_SIFactory API Service Element creation and deletion of service instances

ISLE_Locator API Service Element location of service instances requested by
incoming BIND invocations

ISLE_TraceControl Common Control
Interfaces

start and stop of diagnostic traces

2.3.3.2.6 Dependencies

Interface Defined in Package Purpose

ISLE_Reporter SLE Application logging and notification

ISLE_Trace SLE Application tracing

ISLE_OperationFactory SLE Operations creation of operation objects (not shown in the
diagram)

ISLE_UtilFactory SLE Utilities creation of utility objects (not shown in the
diagram)

ISLE_Concurrent Common Control
Interfaces

start and termination of proxies for concurrent
behavior (not shown in the diagram)

ISLE_Sequential Common Control
Interfaces

start and termination of proxies for sequential
behavior (not shown in the diagram)

ISLE_TraceControl Common Control
Interfaces

start and stop of diagnostic traces of proxies
(not shown in the diagram)

CCSDS 914.0-M-1 Page 2-28 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.3 Component Class API Service Instance

2.3.3.3.1 General

An object of a class derived from the abstract class API Service Instance handles a single
SLE transfer service instance. The class API Service Instance defines those aspects of a
service instance, which are independent of the user and provider role and independent of a
specific service type.

2.3.3.3.2 Responsibilities

2.3.3.3.2.1 Configuration of the Service Instance

The service instance exports the interface ISLE_SIAdmin to set common configuration
parameters after creation. When all parameters have been set, the method
ConfigCompleted() must called. The service instance then checks its configuration for
completeness and consistency.

2.3.3.3.2.2 Control of Initiating Associations

If the service instance initiates binding, it creates the initiating association via the interface
ISLE_AssocFactory exported by the component API Proxy. It selects the proxy
instance from the mapping table in the configuration database of the service element, using
the responder port identifier as a key. The service instance requests the proxy to destroy the
association when it is no longer needed.

Implementations might create the association after configuration and keep it for the complete
lifetime of the service instance or create a new association for every BIND invocation.

2.3.3.3.2.3 Processing of SLE Protocol Data Units

The service instance receives operation objects holding SLE PDUs from the application via
the interface ISLE_ServiceInitiate. It verifies that the PDUs are valid in the current
state and checks the parameters for completeness, consistency, and range. If all checks are
passed, the service instance passes the operation objects to the association for transfer via the
interface ISLE_SrvProxyInitiate. With a positive result code returned to the
application, the service instance guarantees that the PDU has been accepted by the proxy.

The service instance receives operation objects holding SLE PDUs from the association via
the interface ISLE_SrvProxyInform. It verifies that the PDUs are valid in the current
state and checks the parameters for completeness, consistency, and range. If all checks are
passed and the operation is not handled by the service instance itself, it passes the operation
objects to the application via the interface ISLE_ServiceInform.

CCSDS 914.0-M-1 Page 2-29 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.3.2.4 SLE Protocol Execution

The service instance enforces conformance to the state tables defined for SLE services to the
extent that these are independent of service production. The state tables processed by service
instances are specified in section 4.

2.3.3.3.2.5 Management of Invocation Identifiers

The service instance assigns unique invocation identifiers to operation objects for confirmed
SLE operations. For invocations of confirmed operations received from the proxy, the
service instance verifies that the invocation identifier is unique for all operations to which the
application has not yet responded. If the service instance detects a duplicate invocation
identifier, it responds with a return containing a negative response and the appropriate
diagnostic.

It is noted that the confirmed operations BIND and UNBIND do not carry an invocation
identifier and must be excluded from these checks.

2.3.3.3.2.6 Timeout Monitoring for Operation Returns

For confirmed operations invoked by the local application or by the service instance itself, the
service instance ensures that a return is received within a timeout defined as a configuration
parameter. If no return arrives within the specified timeout, it aborts the association.

2.3.3.3.2.7 Pre-setting of Operation Object Parameters

The service instance provides an interface for creation of operation objects for the service
type supported. It uses the interface ISLE_OperationFactory exported by the
component SLE Operations to create these objects and initializes the parameters of the
operation objects according to its own configuration.

2.3.3.3.2.8 Logging and Notification

The class API Service Instance and its derived classes generate log records for important
events and enter them to the system log using the interface ISLE_Reporter provided by
the application. For events that require immediate attention, the service instance notifies the
application using the method Notify() in the interface ISLE_Reporter.

2.3.3.3.2.9 Diagnostic Traces

The class API Service Instance and its derived classes generate trace records and pass them
to the interface ISLE_Trace provided by the application. It supports the interface
ISLE_TraceControl to switch tracing on and off. If requested by the caller, the service
instance forwards the request to the associations, which it is using.

CCSDS 914.0-M-1 Page 2-30 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.3.3 Behavior

For handling of errors, the service instance applies the following rules:

a) If SLE PDUs received from the application are not valid in the current state or fail to
pass any of the other checks the service instance applies, it returns an error code to
the method that passed the PDU.

b) If a PDU received from the application is rejected by the association, the service
instance returns the result code received from the association to the application.
If the result code indicates that the queuing capacity of the association is exceeded,
the service instance aborts the association. Because of the flow control mechanisms
built into the API, queue overflow cannot be caused by transfer of space link data
units. It can only happen because of excessive generation of other events related to
the production process or excessively high status reporting frequencies. In these
cases the application would have no other option to handle the problem.

c) If SLE PDUs received from the association are not valid in the current state or fail to
pass any of the other checks the service instance applies, the service instance
proceeds as follows:

1) if the problem is due to a misbehavior of the association, it returns an error code
to the method that passed the PDU;

2) if the PDU is an invocation of a confirmed operation, the service instance sets the
result of the operation object to ‘negative’, inserts the appropriate diagnostic, and
forwards it to the association for transfer;

3) otherwise, the service instance aborts the association with the appropriate
diagnostic.

2.3.3.3.4 Exported Interfaces

Interface Defined in Package Purpose

ISLE_SIAdmin API Service Element configuration of the service instance

ISLE_SIOpFactory API Service Element creation and initialization of operation objects

ISLE_ServiceInitiate API Service Element passing of SLE PDUs from the application to
the service instance

ISLE_SrvProxyInform API Service Element passing of SLE PDUs received from the
association

ISLE_TraceControl Common Control
Interfaces

start and stop of diagnostic traces

CCSDS 914.0-M-1 Page 2-31 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.3.5 Dependencies

Interface Defined in Package Purpose

ISLE_AssocFactory API Proxy creation and deletion of associations in the
initiator role

ISLE_ServiceInform SLE Application passing of SLE PDUs to the application

ISLE_SrvProxyInitiate API Proxy passing of SLE PDUs to the association for
transfer

ISLE_OperationFactory SLE Operations creation of operation objects (not shown in the
diagram)

ISLE_TraceControl Common Control
Interfaces

start and stop of diagnostic traces of the
association (not shown in the diagram)

2.3.3.4 Internal Class SI User

2.3.3.4.1 General

The class SI User defines those aspects of a service instance in the user role, which are
independent of a specific SLE service type. This class does not export any additional interfaces.

2.3.3.4.2 Responsibilities

2.3.3.4.2.1 Processing of SLE Protocol Data Units

The service instance verifies that PDUs received from the association or from the application
are compatible with the user role, the service type supported, and with the version number of
the service.

2.3.3.4.2.2 Buffering for Return Services

For return services, the service instance accepts the TRANSFER-BUFFER operation object
from the association, extracts the TRANSFER-DATA and SYNC-NOTIFY operation
objects, and passes them to the application in the sequence they have been stored in the
TRANSFER-BUFFER operation object. The service instance verifies that the buffer
received only contains PDUs for which buffering shall be applied.

2.3.3.4.2.3 Flow Control for Forward Services

For forward services, the service instance provides flow control for TRANSFER-DATA
invocations. When a maximum number of TRANSFER-DATA invocations have been
queued by the association and not yet transmitted, the service instance returns a code to the
application requesting it to suspend data transfer. It informs the application when data
transmission can be resumed via the method ResumeDataTransfer() of the interface
ISLE_ServiceInform. The number of invocations that can be queued is defined by the
implementation or can be set in the configuration database of the service element.

CCSDS 914.0-M-1 Page 2-32 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.5 Internal Class SI Provider

2.3.3.5.1 General

The class SI Provider defines those aspects of a service instance in the provider role, which
are independent of a specific SLE service type. This class does not export any additional
interfaces.

2.3.3.5.2 Responsibilities

2.3.3.5.2.1 Processing of SLE Protocol Data Units

The service instance verifies that PDUs received from the association or from the application
are compatible with the provider role, the service type supported, and with the version
number of the service. It extracts the applicable version number from the BIND invocation
received from the proxy.

2.3.3.5.2.2 Buffering for Return Services

For return services the service instance handles the transfer buffer defined by CCSDS
Recommended Standards for return link services. For this purpose, it uses the operation
object for the TRANSFER-BUFFER operation. The service instance adds invocations of the
operations TRANSFER-DATA and SYNC-NOTIFY received from the application to the
TRANSFER-BUFFER operation object, and forwards it to the association when the buffer is
full. The size of the buffer is a parameter passed to the service instance as part of its
configuration.

2.3.3.5.2.3 Buffering in the Delivery Modes Timely Online and Complete Online

For the delivery modes ‘timely online’ and ‘complete online’, the service instance handles the
release timer as defined by the CCSDS Recommended Standards for return link services. The
service instance starts the release timer when inserting the first PDU into the transfer buffer.
When the buffer is full, when the release timer expires, or when the last PDU appended to the
buffer is an ‘end of data’ SYNC-NOTIFY operation, the service instance forwards the transfer
buffer content to the association for transfer in the form of a TRANSFER-BUFFER invocation.

NOTE – The term ‘TRANSFER-BUFFER invocation’ corresponds to a transmission
request for the transfer buffer, not an SLE operation.

2.3.3.5.2.4 Buffering in the Delivery Mode Timely Online

For the delivery mode timely online the service instance additionally handles discarding of
buffers as defined by the CCSDS Recommended Standards for SLE return link services.
When a transfer buffer is due for transmission, it performs the following steps:

CCSDS 914.0-M-1 Page 2-33 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

a) If the association did not yet notify transmission of the previous TRANSFER-
BUFFER invocation, the service instance requests the association to discard the
queued (previous) TRANSFER-BUFFER invocation.

b) If the result returned by the association confirms that the association has actually
discarded a TRANSFER-BUFFER invocation, the service instance inserts a
notification ‘data discarded due to excessive backlog’ at the beginning of the transfer
buffer before forwarding it to the association.

2.3.3.5.2.5 Flow Control for Complete Online and Offline Delivery Modes

In the delivery modes complete online and offline, the service instance provides flow control
for TRANSFER-DATA invocations. If the transfer buffer fills up and a previously sent
TRANSFER-BUFFER invocation has not yet been transmitted by the association, the service
instance returns a code to the application requesting it to suspend data transfer. It informs the
application when data transmission can be resumed via the method
ResumeDataTransfer() of the interface ISLE_ServiceInform.

2.3.3.5.2.6 GET-PARAMETER Operation

The service instance performs the operation GET-PARAMETER without involving the
application. It stores the current value of the requested parameter into the operation object
and forwards it to the association for transfer. It is noted that the GET-PARAMETER
operation is service specific and the derived service-specific class must be involved.

2.3.3.5.2.7 Status Reporting

The service instance performs the operation SCHEDULE-STATUS-REPORT without
involving the application. It handles the report timer, generates status reports when needed,
and forwards them to the association for transfer. The status reports contain the current
values of the service parameters. It is noted that the STATUS-REPORT operation is service
specific and the derived service-specific class must be involved.

2.3.3.5.2.8 Service Provisioning Period

The service instance accepts a BIND invocation only within the scheduled provision period.
If the state of the service instance is not ‘unbound’ at the end of the provision period it aborts
the association. It informs the application of the end of the provisioning period via the
interface ISLE_ServiceInform.

For special purposes, the service provision period can be declared as infinite by setting the
start and end times to NULL. If that is done, the service instance assumes that the provision
period starts as soon as configuration is completed and never terminates.

CCSDS 914.0-M-1 Page 2-34 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.6 Internal Class <SRV> SI User

A class <SRV> SI User exists for every service type supported by the service element. It
ensures that the SLE PDUs passed by the application and by the association are supported by
the service type and handles the service-specific operation objects.

2.3.3.7 Component Class <SRV> SI Provider

2.3.3.7.1 General

A class <SRV> SI Provider exists for every service type supported by the service element.

2.3.3.7.2 Responsibilities

2.3.3.7.2.1 Processing of SLE Protocol Data Units

The service instance ensures that the SLE PDUs passed by the application and by the
association are supported by the service type and handles the service-specific operation objects.

2.3.3.7.2.2 Service Specific Configuration

The service instance provides an interface to define the service-specific configuration
parameters. This interface is defined by the relevant supplemental Recommended Practice
for the service-specific API.

2.3.3.7.2.3 Update of Service Parameters

If defined by the relevant supplemental Recommended Practice for the service-specific API,
the service instance provides an interface to update the values of service parameters used for
the GET-PARAMETER return and for status reports.

2.3.3.7.2.4 GET-PARAMETER and Status Reporting

The service instance generates the service-specific GET-PARAMETER returns and status
reports.

2.3.3.7.2.5 Handling of Service Parameters after UNBIND or Abort

Following completion of the UNBIND operation with the unbind-reason ‘suspend’ or after an
abort, the service instance sets the configuration parameters as defined for the specific service type.

2.3.3.7.3 Exported Interfaces

Interface Defined in Package Purpose

I<SRV>_SIAdmin Service Supplement Configuration of the service instance

I<SRV>_SIUpdate Service Supplement Update of service parameters

CCSDS 914.0-M-1 Page 2-35 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.8 Service Element Configuration Database

The execution of the API Service Element is controlled by parameters in a configuration
database. The structure of this database is implementation specific. It could consist of one or
more files or could be implemented using directory systems or some management database.
The configuration file passed to the service element as part of the configuration can contain the
complete database or only a reference that enables the service element to access the database.

Also the content of the database is largely implementation specific. Elements required by
this Recommended Practice include

a) a table associating port identifiers with protocol identifiers to select the proxy for
outgoing BIND invocations;

b) for a service element supporting the provider role, the minimum and maximum
reporting cycle supported.

2.3.3.9 Interfaces Defined by the Package

Name Description

ISLE_SEAdmin The interface is provided to configure and initialize the service element
component passing it the pointers to interfaces of other components it
needs. In addition, the interface comprises the methods for linking proxy
components and for shutting down the service element.

ISLE_SIFactory The interface allows creation of service instances for a specified service
type and with a specified role (service user or service provider). It also
provides a method to request deletion of a service instance object that is
no longer needed.

ISLE_Locator The locator interface is used to locate a service instance, using the
parameters of a BIND invocation, and to link it with an association
object.

ISLE_SIAdmin The interface provides the methods needed to set common configuration
parameters for a service instance and to complete configuration.
Service type-specific configuration parameters must be set by the
interface specified for that type.

ISLE_SIOpFactory The interface allows creation of operation objects for the service type
supported by the service instance, and initialization of invocation
parameters according to the configuration of the service instance.

ISLE_SrvProxyInform The interface provides the methods to pass SLE operation invocations
and returns received from the peer proxy. In addition, it supports
reporting of actual transfer of a PDU.

ISLE_ServiceInitiate The interface provides the methods to pass SLE operation invocations
and returns from the application to a service instance and to read the
state of the service instance.

CCSDS 914.0-M-1 Page 2-36 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4 PACKAGE COMMON CONTROL INTERFACES

2.3.4.1 Overview

In order to ensure substitutability, handling of multiple flows of control must be well defined
at interfaces between components. This specification defines two behaviors:

a) sequential behavior, in which a single flow of control at a time may pass an interface;

b) concurrent behavior, in which multiple flows of control can pass an interface
concurrently.

NOTES

1 Multiple flows of control are frequently implemented by in-process threads but can
also be provided by interrupt handlers or other operating system features. In this
Recommended Practice, the term ‘thread’ is used in a broader sense referring to any
kind of flow of control.

2 The terms ‘sequential’ and ‘concurrent’ have been adopted from the characteristics
defined in UML for operations. However, the meaning of ‘sequential’ is slightly
more restrictive and the term ‘concurrent’ as used in this Recommended Practice
maps to ‘concurrent or guarded’ in UML.

These behaviors are defined to more detail in 2.3.4.2 and 2.3.4.3. The behavior must be
respected by the supplier of an interface and by the client of an interface. The same behavior
is assumed for complementary interfaces. Components are required to support at least one of
these behaviors but can support both.

A component providing a specific behavior for its interfaces exports an associated control
interface to start and terminate processing of the component. These control interfaces are
defined by the package Common Control Interfaces. The interface ISLE_Sequential is
supported by components providing sequential behavior and the interface
ISLE_Concurrent is supported by components providing concurrent behavior.

For the sequential interface behavior, this Recommended Practice also defines interfaces by
which the client offers means for components to wait for external events and to handle
timers. Components providing concurrent behavior are expected to handle external events
and timers internally.

In addition, this package defines an interface to start and stop diagnostic traces, which is
implemented by all components providing that option.

CCSDS 914.0-M-1 Page 2-37 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.2 Sequential Behavior

2.3.4.2.1 Definitions

A component providing sequential behavior on an interface provided to the application or to
a higher layer API component ensures that methods of the complementary client interfaces
are only called in a thread that originates from a client call. Use of multiple threads by the
component is not excluded, but the component must guarantee that no thread started by the
component itself or by any lower layer component enters client code.

Because of these restrictions, components providing sequential interface behavior cannot
wait for external events or timers without blocking the client. Therefore, the client provides
specific interfaces for monitoring of events and handling of timers on behalf of the
component.

The application or API components using interfaces of lower layer API components with
sequential behavior ensure that methods of these interfaces are invoked sequentially. Use of
multiple threads by clients is not excluded, but access to the interface must be strictly
serialized.

2.3.4.2.2 Sequential Control Interface

2.3.4.2.2.1 General

The elements of the sequential control interface are shown in figure 2-8. The interface
ISLE_Sequential must be implemented by the controlled component. The client of the
interface, the ‘controller’, provides services to the controlled component to listen for external
events and to handle timers. In the model, these services are described by the component
classes Event Monitor and Timer Handler. The controlled component implements the
interfaces that shall be called when an external event is detected
(ISLE_EventProcessor) or a timer expires (ISLE_TimeoutProcessor). In the
model, these interfaces are provided by the component classes Event Processor and Timeout
Processor. The controlled component can use one or more instances of these classes and of
the associated interfaces.

The component class ‘Controlled Component’ is actually a placeholder for a component class
that provides the interface ISLE_Sequential. This can be the component class API
Proxy or the component class API Service Element. Processing of the methods to start and
terminate operation is described in the packages API Proxy and API Service Element.

CCSDS 914.0-M-1 Page 2-38 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ISLE_Sequential
StartSequential()
TerminateSequential()

<<Interface>>

ISLE_EventMonitor
RegisterEvent()

<<Interface>>

ISLE_EventProcessor
<<Interface>>

ISLE_TimerHandler
StartTimer()

<<Interface>>

ISLE_TimeoutProcessor
<<Interface>>

Controller
<<Entity>>

Timer Handler
<<CoClass>>

Event Monitor
<<CoClass>>

Timeout Processor
<<CoClass>>

Controlled Component
<<CoClass>>

Event Processor
<<CoClass>>

Figure 2-8: Sequential Control Interface Component Class Controlled Component

CCSDS 914.0-M-1 Page 2-39 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.2.2.2 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_Sequential Common Control
Interfaces

start and termination of processing and supply of
interfaces for monitoring of external events and
timer handling

2.3.4.2.2.3 Dependencies

Interface Defined in
Package

Purpose

ISLE_EventMonitor Common Control
Interfaces

monitoring of external events

ISLE_TimerHandler Common Control
Interfaces

timer Handling

2.3.4.2.3 Component Class Event Monitor

2.3.4.2.3.1 General

The event monitor supports registration of external events it shall monitor, together with a
reference to the interface ISLE_EventProcessor. When a registered event occurs, the
event monitor calls the method ProcessEvent() of the interface
ISLE_EventProcessor. Events can also be removed from the event monitor. If the
event monitor is no longer able to handle an event, it informs the event processor, using the
method MonitorAbort().

2.3.4.2.3.2 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_EventMonitor Common Control
Interfaces

monitoring of external events

2.3.4.2.3.3 Dependencies

Interface Defined in
Package

Purpose

ISLE_EventProcessor Common Control
Interfaces

processing of external events

CCSDS 914.0-M-1 Page 2-40 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.2.4 Component Class Event Processor

2.3.4.2.4.1 General

The event processor processes an event detected by the event monitor as required for the
component.

2.3.4.2.4.2 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_EventProcessor Common Control
Interfaces

processing of external events

2.3.4.2.5 Component Class Timer Handler

2.3.4.2.5.1 General

The timer handler supports starting of timers, together with a reference to the interface
ISLE_TimeoutProcessor. When the timer expires, the timer handler calls the method
ProcessTimeout() of the interface ISLE_TimeoutProcessor. Running timers can
be cancelled. If the timer handler is no longer able to support a running timer, it informs the
timeout processor, using the method HandlerAbort().

2.3.4.2.5.2 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_TimerHandler Common Control
Interfaces

timer handling

2.3.4.2.5.3 Dependencies

Interface Defined in
Package

Purpose

ISLE_TimeoutProcessor Common Control
Interfaces

processing of a timeout

CCSDS 914.0-M-1 Page 2-41 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.2.6 Component Class Timeout Processor

2.3.4.2.6.1 General

The timeout processor processes a timeout detected by the timer handler as required for the
component.

2.3.4.2.6.2 Exported Interfaces

Interface Defined in Package Purpose

ISLE_TimeoutProcessor Common Control
Interfaces

processing of a timeout

2.3.4.3 Concurrent Behavior

2.3.4.3.1 Definitions

Components providing concurrent interface behavior are able to handle concurrent calls to
the methods of the interface by several flows of control. Components can guard methods of
the interface to achieve sequential semantics, but this fact is not visible to clients.

NOTE – When multiple threads access object data or global data within the component, at
least access to these data must be serialized using some kind of guard.

It is expected that components providing concurrent interface behavior use multiple threads
of control internally. Therefore, they are able to wait for external events and timers without
affecting their clients.

Clients of an interface with concurrent behavior must expect that the methods of the
complementary interface are called by concurrent flows of control.

When SLE protocol data units are passed across an interface with concurrent characteristics,
sequence preservation is not guaranteed when PDUs are passed in one direction by more than
one thread. Therefore, this Recommended Practice foresees sequence counts that allow the
receiver to re-sequence PDUs. Although the actual need for sequence counting depends on
the implementation of a multi-threaded component, this Recommended Practice requires that
sequence counts be always used on an interface with concurrent behavior.

CCSDS 914.0-M-1 Page 2-42 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.3.2 Concurrent Control Interface

The concurrent control interface is shown in figure 2-9.

The component class ‘Controlled Component’ in figure 2-9 is actually a placeholder for a
component class that provides the interface ISLE_Concurrent. This can be the
component class API Proxy or the component class API Service Element. Processing of the
methods to start and terminate operation is described in the packages API Proxy and API
Service Element.

ISLE_Concurrent
StartConcurrent()
TerminateConcurrent()

<<Interface>>

Controller
<<Entity>>

Controlled Component
<<CoClass>>

Figure 2-9: Concurrent Control Interface

2.3.4.4 Trace Control Interface

Components supporting diagnostic traces implement the interface ISLE_TraceControl
to start and stop tracing with a specified trace level. The interface is shown in figure 2-11 in
2.3.5 together with the interface ISLE_Trace provided by the application. Specific uses
are described in the sections dealing with the API Proxy and the API Service Element.

2.3.4.5 Interfaces Defined by the Package

Name Description

ISLE_EventMonitor The interface supports registration of external events, for which the
event monitor shall wait together with a reference to the interface
ISLE_EventProcessor to call when the event is detected.

ISLE_EventProcessor The interface provides a method to call when an external event is
detected and a method to invoke, if the event monitor aborts.

ISLE_TimerHandler The interface allows starting of a timer together with a reference to the
interface ISLE_TimeoutProcessor to call when the timer expires. It
also provides a method to cancel a running timer.

ISLE_TimeoutProcessor The interface provides a method to call, when a timer expires, and a
method to invoke, if the timer handler aborts.

ISLE_Sequential The interface provides methods to start and terminate the operation of
a component that can only handle sequential flows of control. It allows
passing of interfaces to an event monitor and a timer handler.

ISLE_Concurrent The interface provides methods to start and terminate the operation of
a component supporting concurrent flows of control.

ISLE_TraceControl The interface provides methods to start tracing and stop tracing.

CCSDS 914.0-M-1 Page 2-43 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.5 PACKAGE SLE APPLICATION

2.3.5.1 Overview

The SLE Application is not an API component, but the client of the API. However, the
application must provide a set of interfaces for use by the API. In addition, the application
must perform configuration, initialization and control of the API.

The obligations of the application and the interfaces it provides are described in this model
by a set of classes that are assumed present in the application program. These classes are
pure modeling constructs and do not prescribe the design and implementation of the
application in any way.

Figure 2-10 shows the classes provided for actual service provisioning. The model assumes
that every service instance is handled by an instance of the class API Application Instance.
This class defines the functionality that is independent of the user or provider role and the
specific SLE transfer service type. Specific derived classes are assumed for every service
type and role. These are represented by the classes <SRV> User Application and <SRV>
Provider Application in the figure.

SLE Application Instance
<<CoClass>>

<SRV> User Application
<<Internal>>

<SRV> Provider Application
<<Internal>>

ISLE_ServiceInform
<<Interface>>

ISLE_ServiceInitiate
(from API Service Element)

<<Interface>>

ISLE_SIFactory
(from API Service Element)

<<Interface>>
ISLE_SIAdmin

(from API Service Element)

<<Interface>>

I<SRV>_SIAdmin
(from API Service Element)

<<Interface>>
I<SRV>_SIUpdate

(from API Service Element)

<<Interface>>

ISLE_SIOpFactory
(from API Service Element)

<<Interface>>

Figure 2-10: Structure of the Package SLE Application

CCSDS 914.0-M-1 Page 2-44 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Interfaces that must be provided by the application for logging, for notification of events, and
for diagnostic traces, are shown in figure 2-11. The model assumes a class that accepts log
records and notifications (Reporter) and a class that accepts trace records (Trace). The model
does not make any assumptions about the number of objects an application uses.

Reporter
<<CoClass>> ISLE_Reporter

+ LogRecord()
+ Notify()

<<Interface>>

Trace
<<CoClass>>

ISLE_Trace
+ TraceRecord()

<<Interface>>

Controller
<<Entity>>

Controlled Component
<<CoClass>>ISLE_TraceControl

+ StartTrace()
+ StopTrace()

(from Common Control Interfaces)

<<Interface>>

Figure 2-11: Reporting and Tracing Interfaces Provided by the Application

Finally, applications have the option of supplying an external time source to the API
components. To use this option, applications must provide an implementation for the
interface ISLE_TimeSource (Component Class Time Source) and pass it to the creator
function of the component SLE Utilities (see 2.3.7). If the interface is supplied by the
application, the component uses the interface to retrieve current time. Otherwise, it uses
system time.

In addition to the tasks discussed in this section, the application is responsible for
configuration, initialization and shutdown of API components. These tasks are discussed in
more detail in annex F.

CCSDS 914.0-M-1 Page 2-45 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.5.2 Component Class SLE Application Instance

2.3.5.2.1 General

The component class SLE Application Instance handles a single service instance. For this
purpose it implements and exports the interface ISLE_ServiceInform by which it
receives SLE PDUs sent by the peer SLE application. This interface is identical for all
service types and all roles of an SLE Application. The class SLE Application Instance uses
the interface ISLE_ServiceInitiate to pass PDUs to the service instance in the
component API Service Element.

The application instance creates the service instance in the service element using the
interface ISLE_SIFactory and configures the service instance using the interface
ISLE_SIAdmin. For invocations of SLE operations, the class uses the interface
ISLE_SIOpFactory to create the required operation objects.

2.3.5.2.2 Exported Interfaces

Interface Defined in Package Purpose

ISLE_ServiceInform SLE Application passing of SLE PDUs to the application

2.3.5.2.3 Dependencies

Interface Defined in Package Purpose

ISLE_SIFactory API Service Element creation and deletion of service instances

ISLE_SIAdmin API Service Element configuration of the service instance

ISLE_SIOpFactory API Service Element creation and initialization of operation objects

ISLE_ServiceInitiate API Service Element passing of SLE PDUs from the application to
the service instance

2.3.5.3 Internal Class <SRV> User Application

The class <SRV> User Application represents a set of specific classes handling service
instances of a specific service type for an SLE user application.

2.3.5.4 Internal Class <SRV> Provider Application

2.3.5.4.1 General

The class <SRV> Provider Application represents a set of specific classes handling service
instances of a specific service type for an SLE provider application. The class must set
service-specific configuration parameters in the service instance of the service element

CCSDS 914.0-M-1 Page 2-46 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

component. If specified by the relevant supplemental Recommended Practice for the service-
specific API, it updates the service parameters of the service instance using the interface
I<SRV>_SIUpdate.

2.3.5.4.2 Dependencies

Interface Defined in Package Purpose

I<SRV>_SIAdmin Service Supplement configuration of the service instance

I<SRV>_SIUpdate Service Supplement update of service parameters

2.3.5.5 Component Class Reporter

2.3.5.5.1 General

The component class Reporter implements the interface ISLE_Reporter, by which the
application receives log messages and notifications. It is assumed that the log messages are
stored to the system log and notifications are brought to the attention of the operator. A
reference to the interface is passed to the API Proxy and the API Service Element when they
are configured.

2.3.5.5.2 Exported Interfaces

Interface Defined in Package Purpose

ISLE_Reporter SLE Application logging and notification

2.3.5.6 Component Class Trace

2.3.5.6.1 General

The component class Trace implements the interface ISLE_Trace, by which the
application receives trace records. It is assumed that the class stores the trace records to a
file. A reference to the interface is passed to the tracing component with the method
StartTrace() in the interface ISLE_TraceControl.

2.3.5.6.2 Exported Interfaces

Interface Defined in Package Purpose

ISLE_Trace SLE Application Tracing

CCSDS 914.0-M-1 Page 2-47 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.5.7 Component Class Time Source

2.3.5.7.1 General

The component class Time Source implements the interface ISLE_TimeSource, by which
the component class Time (see 2.3.7.3) can retrieve current time. As all API components are
obliged to use the interface ISLE_Time, the time reference supplied by
ISLE_TimeSource is distributed throughout the API.

The time provided via the interface ISLE_TimeSource can be offset from the system
time. However, API components can rely on the fact that the offset is constant throughout
the lifetime of an API instance within the limits of the time accuracy defined by this
Recommended Practice.

2.3.5.7.2 Exported Interfaces

Interface Defined in Package Purpose

ISLE_TimeSource SLE Application Retrieval of current time

2.3.5.8 Interfaces Defined by the Package

Name Description

ISLE_ServiceInform The interface provides the methods to pass on to the application SLE
operation invocations and returns received from the peer application. In
addition, it supports resuming of data transfer if that has been suspended.

ISLE_Reporter The reporter interface provides methods to enter a log record to the
system log and to notify the application of events that require immediate
attention

ISLE_Trace The tracing interface provides a method to pass a trace record.

ISLE_TimeSource Supply of current time.

2.3.6 PACKAGE SLE OPERATIONS

2.3.6.1 Overview

Operation objects store the invocation and return parameters of an SLE operation and export
interfaces by which these parameters can be read and written. In addition, the interfaces
provide features to verify completeness and consistency of the parameters.

Operation objects are implemented by a separate component because they must be passed
across component boundaries.

CCSDS 914.0-M-1 Page 2-48 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

An implementation provides one operation object class for every operation defined for the
SLE transfer service types it supports. All implementations support the common operations
defined in 2.3.6.7 and 2.3.6.8. In addition, all implementations provide an Operation
Factory, providing the interface ISLE_OperationFactory to create an operation object
with a specified interface, a specified SLE transfer service type and a specified version
number for the service type.

Common characteristics of all operation objects are defined by the abstract component class
Operation and its interface ISLE_Operation. Common characteristics of confirmed
operations are defined by the abstract component class Confirmed Operation and its interface
ISLE_ConfirmedOperation. All operation objects for unconfirmed SLE operations are
derived from Operation and all operation objects for confirmed SLE operations are derived
from Confirmed Operation. The same applies to the interfaces exported by these objects.

NOTE – Classes in the package SLE Operations use the interfaces of utility objects. This
fact is not specifically mentioned in the following description.

Operation

Service Type
Operation Type
Confirmed Operation
Invoker credentials

<<CoClass>>

Confirmed Operation

Operation Result
Diagnostic Type
Common Diagnostics
Invocation Identifier
Performer Credentials

<<CoClass>>

ISLE_Operation
Lock()
Unlock()
VerifyInvocationArguments()

<<Interface>>

ISLE_OperationFactory
<<Interface>>

ISLE_ConfirmedOperation
VerifyReturnArguments()

<<Interface>>

<<Inheritance>>

I<SRV>_<UnconfirmedOperation>
<<Interface>>

<<Inheritance>>

I<SRV>_<ConfirmedOperation>
<<Interface>>

<<Inheritance>>

In this case <SRV> can also be replaced by
"SLE" for common operation classes

<SRV> <unconfirmed operation>
<<CoClass>>

<SRV> <confirmed operation>
<<CoClass>>

Operation Factory
<<CoClass>>

instantiates

instantiates

SLE Operations Creator
<Product>_createOpFactory()

instantiates

Figure 2-12: Operation Objects

CCSDS 914.0-M-1 Page 2-49 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.2 Component Class Operation Factory

2.3.6.2.1 General

The operation factory provides an interface to create an instance of an operation object by
specification of the desired interface, the operation type, the service type and the version
number of the service type.

2.3.6.2.2 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_OperationFactory SLE Operations creation of operation objects

2.3.6.3 Component Class Operation

2.3.6.3.1 General

The class defines common characteristics supported by all operations objects.

2.3.6.3.2 Attributes

2.3.6.3.2.1 Common Attributes

The common attributes are displayed in figure 2-12. These are accessible via the interface
ISLE_Operation, inherited by all operation objects.

2.3.6.3.2.2 Service Type and Operation Type

An operation object class is uniquely identified by the combination of the SLE transfer
service type and the operation type, because the same operation can have different
parameters for different SLE transfer service types.

2.3.6.3.2.3 Version Number

Every operation object identifies the version number of the service it supports, because use of
the operation object might differ between the versions.

2.3.6.3.2.4 Confirmed Operation

Identifies whether the operation is confirmed or not.

2.3.6.3.2.5 Invoker Credentials

Holds the credentials of the invoker.

CCSDS 914.0-M-1 Page 2-50 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.3.3 Behavior and Use

2.3.6.3.3.1 Checking of Invocation Parameters

Interfaces to operation objects provide a method for checking the invocation arguments with
respect to completeness, consistency and range. Obviously, an operation object cannot
perform checks that require knowledge of the context. The checks performed are defined in
A5 for common operations and in the supplemental Recommended Practice documents for
service-specific APIs for service type-specific operations.

2.3.6.3.3.2 Support for Concurrent Flows of Control

Access to operation objects is not safe with respect to concurrent access by multiple threads.
However, operation objects provide an advisory lock, which can be used to ensure that access
to the object is guarded. The guarding mechanism provided by operation objects prevents
self inflicting locks.

2.3.6.3.4 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_Operation SLE Operations access to common attributes of operation
objects

2.3.6.4 Component Class Confirmed Operation

2.3.6.4.1 General

The class defines common characteristics supported by all operations objects for confirmed
SLE operations.

2.3.6.4.2 Attributes

2.3.6.4.2.1 Common Attributes

The common attributes are displayed in figure 2-12.

2.3.6.4.2.2 Operation Result

Operation Result holds the result of the operation when it has been performed.

CCSDS 914.0-M-1 Page 2-51 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.4.2.3 Diagnostic Type

Diagnostic Type identifies whether diagnostics are present and if so, whether the common
diagnostics or special diagnostics have been used.

2.3.6.4.2.4 Common Diagnostics

Common Diagnostics holds the common diagnostics, if present.

2.3.6.4.2.5 Invocation Identifier

The Invocation Identifier holds the invocation identifier defined for SLE services.

2.3.6.4.2.6 Performer Credentials

Performer Credentials holds the credentials of the performer.

2.3.6.4.3 Behavior and Use

2.3.6.4.3.1 Checking of Return Parameters

Interfaces of confirmed operation objects provide a method for checking the return
arguments with respect to completeness, consistency and range. The checks performed are
defined in A5 for common operations and in the supplemental Recommended Practice
documents for service-specific APIs for service type-specific operations.

2.3.6.4.3.2 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_ConfirmedOperation SLE Operations access to common attributes of confirmed
operation objects

2.3.6.5 Component Class <SRV> <Unconfirmed Operation>

An operation object class is provided for every unconfirmed SLE operation of the SLE
transfer service types supported by the component. The interfaces of these classes are
derived from ISLE_Operation. The names of the interfaces are constructed by replacing
<SRV> by the abbreviation for the service type. For instance, the name of the interface for
the TRANSFER-DATA operation of the RAF service is IRAF_TransferData.

CCSDS 914.0-M-1 Page 2-52 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.6 Component Class <SRV> <Confirmed Operation>

An operation object class is provided for every confirmed SLE operation of the SLE transfer
service types supported by the component. The interfaces of these classes are derived from
ISLE_ConfirmedOperation. The names of the interfaces are constructed by replacing
<SRV> by the abbreviation for the service type. For instance, the name of the interface for
the TRANSFER-DATA operation of the FSP service is IFSP_TransferData.

2.3.6.7 Operations for Common Association Management

2.3.6.7.1 General

The SLE operations for association management are used for all service types. The interfaces
of operation objects for common association management are shown in figure 2-13.

ISLE_Operation
<<Interface>>

ISLE_Bind
<<Interface>> ISLE_Unbind

<<Interface>>

ISLE_PeerAbort
<<Interface>>

<<Inheritance>>

ISLE_ConfirmedOperation
<<Interface>>

<<Inheritance>>
<<Inheritance>>

<<Inheritance>>

Figure 2-13: Operation Object Interfaces for Common Association Management

CCSDS 914.0-M-1 Page 2-53 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.7.2 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_Bind SLE Operations access to parameters of the BIND operation

ISLE_Unbind SLE Operations access to parameters of the UNBIND operation

ISLE_PeerAbort SLE Operations access to parameters of the PEER-ABORT
operation

2.3.6.8 Other Common SLE Operations

2.3.6.8.1 General

The operations shown in figure 2-14 are identical for all SLE service types that actually use
them. Therefore, the operation object interfaces are defined in this Recommended Practice.

The operation TRANSFER-BUFFER is actually not an SLE operation. In the API it is used
to transfer the contents of the transfer buffer defined for return services between components.
This object also provides methods to facilitate buffering of other operation objects.

ISLE_Operation
<<Interface>>

ISLE_ConfirmedOperation
<<Interface>>

ISLE_ScheduleStatusReport
<<Interface>>

ISLE_Stop
<<Interface>>

ISLE_TransferBuffer
<<Interface>>

<<Inheritance>> <<Inheritance>>
<<Inheritance>>

Figure 2-14: Common SLE Operation Objects

CCSDS 914.0-M-1 Page 2-54 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.8.2 Exported Interfaces

Interface Defined in
Package

Purpose

ISLE_Stop SLE Operations access to parameters of the STOP
operation

ISLE_ScheduleStatusReport SLE Operations access to parameters of the
SCHEDULE-STATUS-REPORT operation

ISLE_TransferBuffer SLE Operations support for handling of the transfer buffer
for return services

2.3.6.9 Interfaces Defined by the Package

Name Description

ISLE_OperationFactory Creation of operation objects

ISLE_Operation Common characteristics of operation objects

ISLE_ConfirmedOperation Common characteristics of confirmed operation objects

ISLE_Bind BIND operation

ISLE_Unbind UNBIND operation

ISLE_PeerAbort PEER-ABORT operation

ISLE_Stop STOP operation

ISLE_ScheduleStatusReport SCHEDULE-STATUS-REPORT operation

ISLE_TransferBuffer Support for handling of the transfer buffer for return services

CCSDS 914.0-M-1 Page 2-55 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.7 PACKAGE SLE UTILITIES

2.3.7.1 Overview

The package SLE Utilities defines a small set of utility classes and the associated interfaces.
The utilities defined for the API are shown in figure 2-15.

SLE Utilities Creator
<Product>_createUtilFactory()

ISLE_Time
<<Interface>>

ISLE_SII
<<Interface>>

ISLE_SecArtributes
<<Interface>>

ISLE_Credentials
<<Interface>>

ISLE_UtilFactory
<<Interface>>

SLE Credentials
<<CoClass>>

Generation Time
Random Number
Hash Code

SLE Security Attributes
<<CoClass>>

User Name
Password

authenticates / generates

SLE SII
<<CoClass>>

Service Instance Identifier

SLE Time
<<CoClass>>

Time

ISLE_TimeSource
(from SLE Application)

<<Interface>>

Utility Factory
<<CoClass>>

instantiates

instantiates

instantiates

instantiates

instantiates

Memory Manager
<<CoClass>>

IMalloc
<<Interface>>

instantiates

Figure 2-15: SLE Utilities

CCSDS 914.0-M-1 Page 2-56 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.7.2 Component Class Utility Factory

The Utility Factory provides an interface to create instances of the utility classes, specified
by the identifier of the interface. It returns a pointer to the interface exported by the
requested class.

2.3.7.3 Component Class Time

The SLE Time class provides a limited set of time handling functions. It specifically
supports the CCSDS defined time codes and conversion between these codes and the native
time representation of the platform. Its services are available via the interface ISLE_Time.

If an external time source interface (ISLE_TimeSource) was supplied to the creator
function of the component, the class Time uses that interface to determine current time.
Otherwise it uses system time.

2.3.7.4 Component Class Service Instance Identifier

The class handles the service instance identifier defined by the CCSDS Recommended
Standards for SLE transfer services. It supports a standard ASCII representation of the
service instance identifier (see annex C for version 1 of the SLE services RAF, RCF and
CLTU, and references [4], [5] and [7] for version 2 of the SLE services RAF, RCF and
CLTU, and [6] and [8] for the SLE services ROCF and FSP), and verifies that the
components of the identifier are those defined by CCSDS. Its services are available via the
interface ISLE_SII.

2.3.7.5 Component Class Credentials

The class holds the credentials used for authentication of the peer identity and provides
access to its attributes via the interface ISLE_Credentials.

2.3.7.6 Component Class Security Attributes

The class holds the user name and password for generation of credentials and for
authentication of the peer identity. It implements generation of the credentials from the
attributes stored and authentication of credentials received from a peer application. Its
services are available via the interface ISLE_SecAttributes.

2.3.7.7 Component Class Memory Manager

The class provides memory management that must be used for all data structures passed
across component boundaries and between the application and API components.

CCSDS 914.0-M-1 Page 2-57 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 2-58 October 2008

2.3.7.8 Interfaces Defined by the Package

Name Description

ISLE_UtilFactory Creation of SLE utility objects

ISLE_Time Time handling

ISLE_SII Handling of the service instance identifier

ISLE_Credentials Storage and transfer of credentials for authentication

ISLE_SecAttributes Storage of security attributes for authentication, generation of credentials,
and authentication of credentials

IMalloc Memory management

2.4 SECURITY ASPECTS OF CORE SLE API CAPABILITIES

The security aspects of the core SLE API capabilities specified in this Recommended
Practice are highly dependent upon the specific SLE Transfer Services that use these core
API capabilities. Therefore, the security aspects associated with the SLE API are identified
as part of the Recommended Practices for each of the specific SLE transfer services, and are
not further addressed in this specification.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3 SPECIFICATION OF API COMPONENTS

3.1 INTRODUCTION

This section provides detailed specifications for the API components

– API Proxy (see 3.2);

– API Service Element (see 3.3);

– SLE Operations (see 3.4);

– SLE Utilities (see 3.5).

In addition, 3.6 specifies what the API expects from an SLE application both in terms of
interfaces that must be implemented and in terms of the tasks the application is expected to
perform for control of the API. The specification defines the full scope of the API, including
the API Service Element. When an application chooses to use the API Proxy directly (e.g.,
in an SLE gateway as outlined in section 2), it must implement the functionality defined for
the API Service Element and must export all interfaces needed by API Proxy.

As far as possible, each of the API components and the SLE application are specified by a
self-contained subsection. In some cases, these subsections comprise specifications on how
interfaces exported by a component must be used. Such specifications actually define
requirements on clients of the component. Where this is the case, cross-references have been
entered to the subsections dealing with client components. Common specifications
applicable to all of the components or on a subset of the components are provided in 3.7.

The specification of API components in this section is based on the model described in
section 2. It is complemented by state transition tables for the API Proxy and the API
Service Element in section 4, and by the specification of the interfaces in annex A.

3.2 API PROXY

3.2.1 FEATURES

3.2.1.1 The proxy shall implement all aspects of SLE transfer services that need to be
provided by technology-specific means.

3.2.1.1.1 The proxy shall perform data conversion between SLE PDUs transmitted across
the network and operation objects used within the API, see 3.2.2.

3.2.1.1.2 The proxy shall establish, maintain, and terminate data communication
associations with one or more peer proxies, see 3.2.4.

3.2.1.1.3 The proxy shall configure and initialize the data communication service as part of
its own configuration and initialization procedure, see 3.2.12.

CCSDS 914.0-M-1 Page 3-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.1.1.4 The proxy shall provide means to dynamically register and de-register responder
ports for SLE service provisioning, see 3.2.5.

3.2.1.2 The proxy shall queue protocol data units and provide flow control features both for
the data received from the network and data sent to the network, see 3.2.3.

3.2.1.3 The proxy shall implement access control on system level, perform authentication
of the peer identity for SLE PDUs received from the network, and generate the credentials
for PDUs sent to the network, see 3.2.6.

3.2.1.4 The proxy shall generate entries to the log of the hosting system for important
events, see 3.2.8.

3.2.1.5 The proxy shall provide the feature to produce an event trace for the complete
proxy and for individual associations, see 3.2.9.

3.2.1.6 The proxy shall support a range of execution environments with respect to use of
processes and in process threads, see 3.2.10.

3.2.1.7 The proxy shall use a configuration database, which shall control its operation
within a specific deployment environment, see 3.2.11.

3.2.1.8 The proxy shall support a special ‘pass-through’ mode of operation, in which it
does not modify any parameters in the PDUs but forwards them unmodified to the respective
recipient.

NOTE – The pass-through mode of operation is further detailed in 3.2.7. Unless stated
otherwise, all other specifications refer to the default mode of operation.

3.2.2 PROCESSING OF SLE PROTOCOL DATA UNITS

NOTE – The proxy may support more than one concurrent bound association (see E5.1).
In that case the processing specified in this subsection must me performed
independently for each association.

3.2.2.1 The proxy shall accept operation objects provided by the component SLE
Operations via the interface ISLE_SrvProxyInitiate. With the operation parameters
extracted from the operation objects, it shall create SLE protocol data units in the format and
encoding required for transfer, and transmit these PDUs to the peer proxy.

NOTE – The format and encoding used for transfer are determined by the technology used
by the proxy.

3.2.2.1.1 For invocations of unconfirmed SLE operations and for operation returns, the
proxy shall release the operation object when the parameters have been extracted from the
object.

CCSDS 914.0-M-1 Page 3-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – The exact time at which the object is released is not defined by this specification.
The objects might be released immediately or when the PDU has been actually
transmitted.

3.2.2.1.2 For invocations of confirmed operations, the proxy shall memorize the object
until the operation return from the peer proxy arrives, or the association is terminated.

3.2.2.1.3 Except for the PEER-ABORT invocation, the proxy shall ensure that PDUs
received from its local client on one association are transmitted to the peer proxy in the
sequence received.

NOTE – Handling of the PEER-ABORT invocation is defined in 3.2.4.4.

3.2.2.2 The proxy shall receive SLE protocol data units from the peer proxy in the format
and encoding used for transfer. It shall decode the operation parameters, store them to the
associated operation object and forward the operation object to its client via the interface
ISLE_SrvProxyInform.

3.2.2.2.1 For operation invocations, the proxy shall create a new operation object, using the
interface ISLE_OperationFactory, which is supplied to the proxy as part of its
configuration.

3.2.2.2.2 For operation returns, the proxy shall associate the PDU received from the peer
proxy with the operation object of the corresponding invocation using the invocation
identifier. If no corresponding invocation can be found, the proxy shall abort the association
with PEER-ABORT and the diagnostic ‘unsolicited invoke ID’.

NOTES

1 The invocation identifier of a return must match the invocation identifier of an
invocation for the same operation type. It is noted that invocation identifiers must
also be unique across all operations. This requirement is handled by the service
element.

2 It is further noted that the confirmed operations BIND and UNBIND do not carry an
invocation identifier. For these operations, only a single return can be outstanding at
any time, such that association of the return with the invocation shall be possible.

3.2.2.2.3 The proxy shall release an operation object passed to its client when the function
passing that object has returned.

NOTE – The specification implies that the proxy does not memorize invocations of
confirmed operations it passes to its local client. It is considered the
responsibility of the client not to send any returns for which no invocation has
been received.

CCSDS 914.0-M-1 Page 3-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.2.2.4 If there is a decoding error, the proxy shall abort the association using the
PEER-ABORT operation.

3.2.2.2.5 Except for the PEER-ABORT invocation, the proxy shall ensure that PDUs
received from the peer proxy on one association are delivered to its client in the sequence
received.

NOTE – Handling of the PEER-ABORT invocation is defined in 3.2.4.4.

3.2.3 FLOW CONTROL

NOTE – The proxy may support more than one concurrent bound association (see E5.1).
In that case the processing specified in this subsection must me performed
independently for each association.

3.2.3.1 Incoming Traffic

The proxy shall limit the number of protocol data units received from the peer proxy and not
yet forwarded to its client to a configurable maximum number N1 per association. In
addition, the proxy shall ensure that a maximum number N2 ≤ N1 of these are
TRANSFER-BUFFER invocations. When either of these limits is reached the proxy shall
not read any further data from the network such that a backlog is built up.

NOTES

1 The objective of this specification is to ensure that incoming traffic is controlled and
backpressure is actually built up when needed. An implementation may restrict the
number of PDUs it accepts from the network per association or for all associations; it
must not accept more than defined by the configuration parameters. When a proxy
limits the number of incoming PDUs that it can process in parallel, the limits shall be
clearly documented.

2 TRANSFER-BUFFER is not defined as an SLE operation but refers to the PDU used
for transmission of the transfer buffer used by return link services. For a specification
of the ‘pseudo-operation’ TRANSFER-BUFFER within the API, see 3.4.

3.2.3.2 Outgoing Traffic

3.2.3.2.1 The proxy shall queue a configurable maximum number of PDUs for transfer per
association.

CCSDS 914.0-M-1 Page 3-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – This specification does not prescribe what the proxy actually queues. Whether it
queues the operation object, a data structure ready for transmission, or any other
object depends on the implementation. For a technology based on remote
procedure calls, the ‘queue’ might also consist of procedure calls that have not
yet been completed.

3.2.3.2.2 When the proxy accepts a transfer request by a result code indicating success, it
shall guarantee that the associated PDU has been queued for transmission. The positive
result code does not imply that the PDU has been transmitted.

3.2.3.2.3 When the client requests to be informed on transmission of a PDU (setting the
argument reportTransmission in the interface ISLE_SrvProxyInitiate to
true), the proxy shall inform the client by:

a) returning the appropriate result code of the function if the PDU can be sent
immediately; or

b) calling the function PDUTransmitted() in the interface
ISLE_SrvProxyInform when that PDU has been transmitted if immediate
transfer is not possible.

NOTE – The exact meaning of ‘transmitted’ depends on the technology used by the
proxy. As a minimum, the communications system must have been requested
to initiate transfer of the data.

3.2.3.2.4 When the maximum queue size has been reached, the proxy shall reject further
transfer requests with a result code indicating ‘overflow’ until the queue size drops below the
threshold again.

NOTE – It is expected that the client will abort the association in such a case. However
this decision must be taken by the client and not by the proxy.

3.2.3.2.5 The proxy shall provide a method to discard TRANSFER-BUFFER invocations
that have been queued for transmission and for which data transfer has not yet started.

NOTE – In other respects, the proxy shall handle the TRANSFER-BUFFER invocation as
any other PDU. It shall queue more than one TRANSFER-BUFFER invocation
if so requested. This is necessary in some cases, e.g., for support of 3.3.5.3.5.1
item b). Buffering for return services is the responsibility of the service instance.

3.2.3.2.6 When discarding of queued buffers is requested (using the method
DiscardBuffer() in the interface ISLE_SrvProxyInitiate), the proxy shall
search the queue and release all resources allocated for all TRANSFER-BUFFER PDUs on
the queue.

3.2.3.2.7 The result code returned by the method shall indicate whether one or more
TRANSFER-BUFFER PDUs have been actually discarded.

CCSDS 914.0-M-1 Page 3-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4 ASSOCIATION MANAGEMENT

3.2.4.1 General Specifications

NOTES

1 The exact meaning of an association depends on the technology used by the proxy. In
the context of the SLE API, the essentials are:

a) an association is established when the BIND operation has been completed
successfully;

b) an association is terminated by one of the operations UNBIND, PEER-ABORT,
or by a protocol abort;

c) other SLE operation invocations and returns can only be exchanged on an
established association.

2 This specification makes no assumptions concerning the characteristics of the
technology and its use by the proxy.

3 If the underlying technology is connection oriented, an implementation might:

a) apply a one to one mapping between an association and a connection;

b) use multiplexing of associations on one connection; or

c) use more than one connection for a single association.

4 This specification does not prescribe whether the operations BIND, UNBIND and
PEER-ABORT are implemented by means of specific connection establishment and
release procedures provided by the communications technology or by exchange of
data on an established connection.

5 If the technology is connectionless, the notion of an association is provided by the
implementation of the proxy.

6 In this specification, the term association is also used to refer to the component object
that provides the interface to the ‘real association’. The association object can exist
in an ‘unbound’ state; i.e., the association it handles has not yet been established or
has been terminated. Whether a specification refers to the association object or the
actual association should become clear from the context in most cases. Where there
is a need to explicitly refer to the object, the term ‘association object’ is used. To
make explicit reference to the association provided by the data communications
service, the term ‘data communication association’ is used.

7 Further details are specified in the state table for associations in section 4. This state
table complements the following specifications.

CCSDS 914.0-M-1 Page 3-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.1.1 The proxy shall establish a data communication association with a peer proxy as
part of the BIND operation.

NOTE – Association establishment by the proxy is specified in 3.2.4.2.

3.2.4.1.2 Associations managed by a proxy are distinguished by the role the proxy plays in
the BIND operation. The role of an association can be either ‘initiator’ or ‘responder’.

NOTE – The roles ‘initiator’ and ‘responder’ for the BIND operation are defined in
references [4], [5], [6], [7] and [8].

3.2.4.1.3 An implementation of the API Proxy may support associations in the initiator role
and associations in the responder role concurrently or may provide associations only for one
of these roles.

3.2.4.1.4 Associations in the initiator role shall be created and deleted by the client using
the interface ISLE_AssocFactory exported by the proxy.

3.2.4.1.5 If the implementation does not support associations in the initiator role or does
not support the SLE service type requested by the client, the association factory shall reject
the request.

3.2.4.1.6 Following creation of an association in the initiator role, its state shall be
‘unbound’.

3.2.4.1.7 Associations in the initiator role shall use the interface
ISLE_SrvProxyInform passed to the factory interface to forward SLE PDUs received
from the peer proxy.

3.2.4.1.8 The proxy shall release association objects in the initiator role only on request of
the client (via the interface ISLE_AssocFactory) or as part of the terminate function. It
shall reject the request to delete the association object if the association is not in the state
‘unbound’.

3.2.4.1.9 Association objects in the responder role shall be created and deleted
autonomously by the proxy as part of the association establishment and release procedures.

NOTE – Association establishment and release is specified in 3.2.4.2, 3.2.4.3 and 3.2.4.4.

3.2.4.1.10 The proxy shall provide specific associations for every SLE service type it
supports.

3.2.4.1.11 An association shall accept every PDU defined for the supported SLE service
from its local client or the remote proxy. For any other PDU, the proxy shall reject a transfer
request from its local client and abort the association with PEER-ABORT, if it receives the
PDU from the peer proxy.

CCSDS 914.0-M-1 Page 3-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.1.12 The proxy shall be able to decode PDUs received on an association if the PDUs
are defined for the service type supported by the association object.

NOTE – For other PDUs, decoding is expected to fail. If decoding does succeed, the PDU
must be rejected as ‘unknown’ according to 3.2.4.1.11.

3.2.4.1.13 The proxy and the associations shall not distinguish between the roles SLE
service provider and SLE service user. Associations shall accept every PDU that is defined
for the supported SLE service type from the local client and from the remote proxy.

NOTE – This implies, for instance, that an association might also accept a
TRANSFER-DATA invocation for a forward service when that is issued by an
SLE service provider. It is the responsibility of higher layers to prevent such
requests. Note that associations do distinguish between the role ‘initiator’ and
‘responder’, and apply the associated rules for the BIND and UNBIND
operations defined in 3.2.4.

3.2.4.1.14 The proxy shall terminate a data communication association in an orderly manner
as part of the UNBIND procedure.

NOTE – Orderly association release by the proxy is specified in 3.2.4.3.

3.2.4.1.15 The proxy shall abort an association in the following cases:

a) the local client invokes the PEER-ABORT operation;

b) the remote proxy invokes the PEER-ABORT operation;

c) abort of the association is explicitly required by any other specification for the proxy
in this document; or

d) the proxy is affected by major problems and cannot continue processing of the
association.

NOTE – This specification implies that the proxy might also abort the association in the
case of a catastrophic failure when that case is not specified in this document.
Association abort in is specified in 3.2.4.4.

3.2.4.2 Association Establishment

NOTE – This section defines procedures for association establishment without
consideration of security aspects. Specifications related to access control and
authentication, which must be taken into account for association establishment,
are provided in 3.2.6.

CCSDS 914.0-M-1 Page 3-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.2.1 Associations in the Initiator Role

3.2.4.2.1.1 For association objects in the initiator role, the proxy shall initiate establishment
of a data communication association when the client requests transfer of a BIND invocation
and the state of the association object is ‘unbound’.

3.2.4.2.1.2 The proxy shall initiate association establishment using the parameters of the
BIND invocation. It shall transmit the BIND invocation PDU to the remote proxy as part of
this procedure.

3.2.4.2.1.3 The proxy shall complete the association establishment procedure when it
receives the BIND return from the remote proxy. If the BIND return PDU contains a
positive result, the association shall be established and the state shall be set to ‘bound’. If the
BIND return PDU carries a negative result, the association shall not be established and the
state shall be set to ‘unbound’. The proxy shall inform its client by forwarding the operation
object with the return parameters received from the peer proxy.

3.2.4.2.1.4 If association establishment fails before the BIND invocation can be transmitted
or before the BIND return is received, the proxy shall inform its client and perform the
cleanup actions defined for the PEER-ABORT operation in 3.2.4.4.

NOTE – This specification does not prescribe the means by which the proxy informs its
client, as the selection of the appropriate method depends on implementation
details. If the connection failure is detected in the same thread of control in
which the BIND invocation was passed to the proxy, the proxy may opt to return
the appropriate error code to the caller of that method. In all other cases, the
proxy shall use the method ProtocolAbort() of the interface
ISLE_SrvProxyInform.

3.2.4.2.2 Associations in the Responder Role

3.2.4.2.2.1 A proxy supporting associations in the responder role may listen for association
establishment requests on the network interface using technology-specific means. Whether a
proxy instance actually listens for such requests and when it starts listening is defined in the
configuration database.

NOTE – In a given deployment environment, a proxy may not be supposed to listen for
and respond to BIND invocations from the network interface, although it may be
able to do so. An example of such an environment is an SLE service user system
that does not support the provider-initiated bind option. The configuration
database and the initialization procedures are specified in 3.2.11. Depending on
the technology used, the implementation of the proxy, and the requirements of
the hosting system, a proxy might only start listening when a port has been
registered dynamically. In other environments, the port on which a proxy listens
might be statically defined and the proxy might start listening as soon as its
operation has been started.

CCSDS 914.0-M-1 Page 3-9 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.2.2.2 A proxy listening for association establishment requests on the network
interface shall process an incoming call as defined by the specifications in 3.2.4.2.2.3 to
3.2.4.2.2.10.

3.2.4.2.2.3 The proxy shall receive a BIND invocation PDU from the remote proxy as part
of the association establishment procedure, and shall perform the checks defined in
3.2.4.2.2.4 and 3.2.4.2.2.5.

NOTE – Further checks related to access control and authentication are defined in 3.2.6.

3.2.4.2.2.4 If the SLE service type does not match one entry in the list of supported service
types in the configuration database, the proxy shall respond with a BIND return containing a
negative result and the diagnostic ‘service type not supported’.

3.2.4.2.2.5 If the version number does not match one entry in the list of supported versions
for the service type defined in the configuration database, the proxy shall respond with a
BIND return containing a negative result and the diagnostic ‘version not supported’.

NOTE – This version of the API does not support the optional version-number negotiation
procedure defined by the CCSDS Recommended Standards for SLE transfer
services. The responding proxy either accepts the proposed version number, or
responds with a BIND return containing a negative result. It does not propose a
different version number.

3.2.4.2.2.6 If the BIND invocation is acceptable for the proxy, it shall create an association
object supporting the SLE service type identified in the BIND invocation. It shall then
inform its client using the interface ISLE_Locator and pass a reference to interface
ISLE_SrvProxyInitiate of the association as well as to the BIND operation object.

3.2.4.2.2.7 If the locator returns a positive result code and a pointer to the complementary
interface ISLE_SrvProxyInform, the proxy shall forward the BIND operation object via
that interface.

3.2.4.2.2.8 If the locator returns an error, the proxy shall send a BIND return containing a
negative result and a diagnostic reflecting the result code returned by the locator to the
remote proxy. The proxy shall not establish the data communication association and shall
release the association object.

3.2.4.2.2.9 The proxy shall complete the association establishment procedure when it
receives the BIND return from its local client. If the BIND return PDU contains a positive
result, the association shall be established and the state shall be set to ‘bound’. If the BIND
return PDU carries a negative result, the association shall not be established and the
association object shall be released. In both cases, the proxy shall forward the BIND return to
the peer proxy.

CCSDS 914.0-M-1 Page 3-10 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.2.2.10 If association establishment fails before the call to the locator, the proxy shall
release all resources allocated to the association and shall not inform its client. If association
establishment fails subsequently but before the BIND return can be transmitted, the proxy
shall inform the client and perform the cleanup actions defined for the PEER-ABORT
operation in 3.2.4.4.

3.2.4.2.3 Port Identifiers

3.2.4.2.3.1 The proxy shall map the responder port identifier specified by the CCSDS
Recommended Standards for SLE transfer services to address information as required by the
technology used.

NOTE – The means by which this mapping is performed is not prescribed by this
specification. Options include a local table lookup and a query to a directory
system. The method used by an implementation must be documented together
with the required configuration.

3.2.4.2.3.2 When a BIND invocation is requested on the local interface, the proxy shall
derive the technology dependent information required to establish an association from the
parameter ‘responder port identifier’.

3.2.4.2.3.3 When receiving a BIND invocation from a peer proxy, the proxy shall ensure
that the value of the responder port identifier passed to the local client is identical to the
value that has been passed to the peer proxy by the client of the peer proxy.

NOTE – An implementation may choose to transmit the original value or to derive it from
technology-specific formats.

3.2.4.2.4 Protocol for the BIND Operation

The proxy shall ensure that the BIND operation is not performed on an established
association or during association release and is not re-invoked during association
establishment. It shall also ensure that the BIND operation is performed according to the
protocol defined by the CCSDS Recommended Standards for SLE transfer services.

3.2.4.3 Orderly Association Release

3.2.4.3.1 The proxy shall enforce the rules defined in the CCSDS Recommended Standards
for SLE transfer services for initiating the UNBIND operation. It shall ensure that the
UNBIND operation is performed only on an established association and is not re-invoked
during association release. It shall also ensure that UNBIND operation is performed
according to the protocol defined by the CCSDS Recommended Standards for SLE transfer
services.

CCSDS 914.0-M-1 Page 3-11 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.3.1.1 When receiving a valid UNBIND invocation from the peer proxy, the proxy
shall remove and discard all operation invocations that are queued for transmission on the
affected association.

NOTE – Following reception of an UNBIND invocation, the responder shall not send any
further invocations. Pending operation returns may still be transmitted.

3.2.4.3.1.2 The proxy shall ensure that the data communication association is terminated as
part of the UNBIND operation.

NOTE – The means by which the data communication association is terminated and the
time at which it is terminated depends on the technology used and the
implementation of the proxy.

3.2.4.3.1.3 Following completion of the UNBIND operation, the proxy shall set the state of
the association to ‘unbound’, release all resources allocated to the association, discard all
PDUs that may still be queued for transmission, and release all operation objects that may
still be memorized. If the association object has the responder role, the proxy shall also
release the association object.

3.2.4.4 Association Abort

3.2.4.4.1 The proxy shall implement invocation of the PEER-ABORT operation as defined
by the following specifications.

3.2.4.4.1.1 The proxy shall discard all PDUs that are queued for transmission and all PDUs
received from the peer proxy that have not yet been forwarded to its client. It shall also
release all operation objects for which returns are still pending.

3.2.4.4.1.2 The proxy shall make sure that the peer proxy recognizes the PEER-ABORT
invocation and that the diagnostic parameter of the PEER-ABORT invocation is made known
to the peer proxy.

3.2.4.4.1.3 The proxy shall abruptly terminate the data communication association using
the most efficient means available from the data communications technology, which are able
to meet the requirement stated in 3.2.4.4.1.2.

3.2.4.4.1.4 The proxy shall set the state of the association to ‘unbound’. If the association
object has the responder role, the proxy shall also release the association object.

3.2.4.4.1.5 If the proxy invokes the PEER-ABORT operation on its own initiative, it shall
also forward a PEER-ABORT operation object to its local client. It shall set the parameter
‘originator’ in this object to ‘proxy’.

3.2.4.4.2 When the proxy is informed of a PEER-ABORT invoked by the peer proxy, it
shall perform the following steps:

CCSDS 914.0-M-1 Page 3-12 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.4.2.1 The proxy shall discard all PDUs that are queued for transmission and all PDUs
received from the peer proxy that have not yet been forwarded to its client. It shall also
release all operation objects for which returns are still pending.

3.2.4.4.2.2 The proxy shall forward a PEER-ABORT operation object containing the
diagnostics set by the peer proxy to its local client. It shall set the parameter ‘originator’ in
this object to ‘peer’.

3.2.4.4.2.3 The proxy shall set the state of the association to ‘unbound’. If the association
object has the responder role, the proxy shall also release the association object.

NOTE – Depending on the communications technology and its specific use by the proxy,
the proxy might have to accept and discard data that have already been
transmitted by the peer proxy. Associated activities are performed ‘behind the
scenes’ and are not visible to clients.

3.2.4.4.3 Aborting an association shall not affect any other associations that are currently
handled by the proxy.

3.2.4.5 Failure of the Data Communication Service

3.2.4.5.1 The proxy shall monitor the status of an association and inform its local client if
the data communication connection breaks down using the method ProtocolAbort() of
the interface ISLE_SrvProxyInform.

3.2.4.5.1.1 If the communications provider does not signal breakdown of the data
communication connection, the proxy shall support the requirement by implementing
adequate methods.

3.2.4.5.1.2 The maximum acceptable delay between the time the communications
connection fails and the associated call to ProtocolAbort() shall be configurable.

3.2.4.5.1.3 If the data communication connection breaks down, the proxy shall perform the
cleanup actions defined for the PEER-ABORT operation in 3.2.4.4.

3.2.5 DYNAMIC PORT REGISTRATION

3.2.5.1 The proxy shall support dynamic registration and de-registration of ports on which
it accepts BIND invocations, according to the following specifications.

NOTE – The actions associated with dynamic port registration depend on the technology.
These could include registration of an address, export of information to a
directory service or publishing of a service by any other means. Port registration
is only required for a proxy in the role of a BIND responder. If no actions are
required for a given technology or implementation, the request should simply be
ignored.

CCSDS 914.0-M-1 Page 3-13 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.5.1.1 Port registration has the effect that requests sent to the port are correctly routed to
the proxy that registered it. If the proxy can detect duplicate registration of the same port by
more than one proxy instance, it shall reject the request with an error.

3.2.5.1.2 The information supplied for registration includes the following parameters:

a) responder port identifier; and

b) service instance identifier.

NOTE – The information actually used by the proxy depends on the implementation.

3.2.5.1.3 The proxy shall reject registration if:

a) the proxy does not support associations in the responder role or the responder role is
not enabled in the configuration database;

b) the responder port identifier is not part of the address mapping information in the
configuration database; or

c) the responder port identifier is not marked as local port.

3.2.5.1.4 If registration is accepted, the proxy shall return a registration identifier that must
be used for later de-registration.

3.2.5.1.5 The proxy shall de-register ports on client request as required by the technology.

3.2.5.1.6 The proxy shall ensure that BIND invocations sent to a registered port are
received by the proxy instance in the period from port registration until de-registration.

3.2.6 SECURITY

3.2.6.1 Security Information

3.2.6.1.1 The configuration database of the proxy shall contain all information required for
authentication of the identity of the local SLE application and of peer SLE applications.

3.2.6.1.1.1 The configuration database shall contain a list of registered peer applications,
and for each application:

a) the identifier of the application as a printable character string;

NOTE – The identifier is the name of the authority operating the application (user
name).

b) the authentication mode for communication with the peer application; the
authentication mode defines one of the following:

1) authentication shall not be applied (‘none’);

CCSDS 914.0-M-1 Page 3-14 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2) authentication shall be applied for the BIND operation only (‘bind’); or

3) authentication shall be applied for all operations except for PEER-ABORT (‘all’).

c) the security attributes needed for authentication of the peer application, unless the
authentication mode is set to ‘none’.

NOTE – The security attributes are defined in 3.5.6 for the utility object Security
Attributes, which provides the actual authentication service.

3.2.6.1.1.2 For the local SLE application, the configuration database shall contain:

a) the identifier of the application as a printable character string; and

b) the security attributes needed for authentication.

3.2.6.1.1.3 Entry and update of the security information in the configuration database is an
implementation-specific maintenance activity and is not defined by this specification. An
implementation must document the format of the related entries and the means by which the
content can be defined and updated.

NOTE – This specification implies that it might be necessary to stop and restart the proxy
when this information is modified.

3.2.6.2 Access Control

3.2.6.2.1 When receiving a BIND invocation from the peer proxy for a new association, the
proxy shall perform the following steps:

3.2.6.2.1.1 The proxy shall use the parameter ‘initiator identifier’ in the BIND invocation
to locate the initiator in the list of registered peer applications.

3.2.6.2.1.2 If the initiator is not registered, the proxy shall respond with a BIND return,
containing a negative result and the diagnostic ‘access denied’. This BIND return shall not
contain credentials. In addition, the proxy shall generate an ‘access violation alarm’.

NOTE – The access violation alarm is defined in 3.2.6.4.

3.2.6.2.1.3 If the initiator is registered, the proxy shall assign the authentication mode and,
if applicable, the security attributes specified for the initiator to the association.

3.2.6.2.2 When receiving a BIND return from its local client, or when generating a BIND
return, the proxy shall insert the local application identifier stored in its configuration
database into the parameter ‘responder identifier’ of the BIND return PDU.

3.2.6.2.3 When receiving a BIND invocation from its local client for an unbound
association, the proxy shall perform the following steps:

CCSDS 914.0-M-1 Page 3-15 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – This specification implies that the authentication mode of an association is
always determined by the authentication mode of the peer application.
Therefore, different authentication modes may be specified for different peers,
but the same authentication mode is always used for the same peer.

3.2.6.2.3.1 The proxy shall use the parameter ‘responder identifier’ in the operation object
passed with the BIND invocation request to locate the responder in the list of registered peer
applications.

NOTE – Although the BIND invocation PDU defined by the CCSDS Recommended
Standards for SLE transfer services does not include the responder identifier, this
argument must be passed to the proxy with the BIND invocation request, to
enable the proxy to determine the authentication mode. The proxy does not
insert that argument into the BIND invocation PDU.

3.2.6.2.3.2 If the responder is not registered, the proxy shall reject the request with a result
code indicating ‘peer application not registered’.

3.2.6.2.3.3 If the responder is registered, the proxy shall assign the authentication mode
and, if applicable, the security attributes specified for the responder, to the association.

3.2.6.2.3.4 The proxy shall insert the local application identifier stored in its configuration
database into the parameter ‘initiator identifier’ of the operation object and the BIND
invocation PDU.

3.2.6.2.4 When receiving a BIND return from the peer proxy on an association in the state
‘bind pending’, the proxy shall perform the following steps:

3.2.6.2.4.1 If the responder identifier in the PDU is not registered, the proxy shall abort the
association with the diagnostic ‘access denied’ and generate an access violation alarm.

3.2.6.2.4.2 If the responder is registered, but differs from the responder assigned to the
association, the proxy shall abort the association with the diagnostic ‘unexpected responder
ID’ and generate an access violation alarm.

3.2.6.3 Authentication

NOTE – In the following, the term ‘ignore the PDU’ might be interpreted in different
ways, depending on the data communications technology, the proxy
implementation, and the specific SLE operation. 3.2.6.3.2 specifies permissible
interpretations and behaviors.

3.2.6.3.1 The proxy shall perform the following steps for all SLE PDUs received from the
peer proxy, immediately after decoding and before any other processing steps.

CCSDS 914.0-M-1 Page 3-16 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTES

1 For a BIND invocation, these steps are performed immediately after location of the
initiator identifier on the list of registered applications, if the PDU is received on an
unbound association. For a BIND return, these steps are performed immediately after
location of the responder identifier if the PDU is received on an association in the
state ‘bind pending’.

2 The TRANSFER-BUFFER PDU (see 3.3.5.3) does not represent an invocation or
return of an SLE operation but is rather used to transmit a number of TRANSFER-
DATA and SYNC-NOTIFY invocations as a single data unit across the association
between the SLE Provider and the SLE User. Therefore authentication shall be
performed on each of the contained SLE PDUs presenting SLE operation invocations
and not on the TRANSFER-BUFFER PDU.

3.2.6.3.1.1 The proxy shall check the authentication mode assigned to the association to
determine whether authentication is required.

3.2.6.3.1.2 If authentication is required, the proxy shall use the PDU parameter holding the
peer’s credentials and the security attributes assigned to the association to authenticate the
identity of the peer.

NOTE – For invocations the parameter used is ‘initiator credentials’ and for returns
‘responder credentials’.

3.2.6.3.1.3 For the actual authentication procedure, the proxy shall use the service provided
by the component ‘SLE Utilities’ via the interface ISLE_SecAttributes. The
acceptable delay argument required for authentication is defined in the configuration
database of the proxy.

NOTE – The authentication procedure and the role of the argument ‘acceptable delay’ are
defined in 3.5.6.

3.2.6.3.1.4 If authentication fails, the proxy shall generate an authentication alarm, and
ignore the PDU.

NOTE – The authentication alarm is defined in 3.2.6.4.

3.2.6.3.2 The action to ‘ignore a PDU’ shall be implemented according to the following
specifications:

3.2.6.3.2.1 As a rule, the proxy shall not take any action that could be observed via the
network. In addition, it shall not modify the state of the association or of any operation
object waiting for a return PDU, such that a subsequent ‘legal’ return will succeed.

3.2.6.3.2.2 In order to prevent permanent blocking of resources, a proxy implementation
may abort the underlying data communication connection and set the state of the association

CCSDS 914.0-M-1 Page 3-17 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

to ‘unbound’ when authentication fails for a BIND invocation, BIND return, or UNBIND
invocation. If this option is selected, the abort procedure shall restrict the information that is
made available to the peer system to the minimum possible. For a BIND return and an
UNBIND invocation, the proxy shall inform its local client using a PEER-ABORT operation
object with the diagnostic ‘other reason’.

3.2.6.3.2.3 If an implementation uses technology-specific connection termination
procedures for the operation UNBIND, it might not be possible to apply the rule defined in
3.2.6.3.2.1 for a BIND return. In such a case the proxy shall accept the PDU and perform the
appropriate actions defined in 3.2.4.3.

NOTE – The proxy shall nevertheless perform authentication and generate the
authentication alarm record, such that the attack can be recognized. It is noted
that authentication at application level cannot provide any protection against an
intruder who succeeds in closing the connection of the underlying
communications service. The case addressed here therefore does not imply a
reduced level of security.

3.2.6.3.3 When receiving a PDU for transfer from its local client, the proxy shall perform
the following steps:

3.2.6.3.3.1 If the authentication mode assigned to the association requires authentication for
the PDU, the proxy shall insert the credentials for the local SLE application into the
operation object passed by the client.

NOTE – Inserting the credentials into the operation object instead of writing it directly
into the PDU makes sure that the information held by the operation object is
complete. The credentials are subsequently inserted into the PDU used for
transfer.

3.2.6.3.3.2 For generation of the credentials, the proxy shall use the service provided by the
component ‘SLE Utilities’ via the interface ISLE_SecAttributes.

3.2.6.3.3.3 If authentication is not required, the proxy shall set the parameter for the
credentials of the local SLE application in the operation object to ‘not used’.

3.2.6.4 Security Alarms

3.2.6.4.1 For the following security alarms, the proxy shall enter an alarm record into the
system log and notify the application via the interface ISLE_Reporter.

3.2.6.4.1.1 The access violation alarm record shall be generated when a peer identifier is
not registered in the configuration database of the proxy (see 3.2.6.2.4.2) or differs from the
expected one. It shall comprise as much information as possible to allow investigation of the
event. The information entered shall include but not be limited to the following:

CCSDS 914.0-M-1 Page 3-18 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

a) For access violation associated with a BIND invocation, the alarm record shall
contain the following parameters extracted from the PDU:

1) the initiator identifier; and

2) the service instance identifier.

b) For access violation associated with a BIND return, the alarm record shall contain the
responder identifier extracted from the PDU and the following parameters derived
from the attributes of the association:

1) the responder port identifier; and

2) the service instance identifier.

3.2.6.4.1.2 The authentication alarm record shall be generated whenever authentication
fails. It shall comprise as much information as possible to allow investigation of the event.
The information entered shall include but not be limited to the following:

a) the peer identifier;

b) the credentials for which authentication has failed; and

c) the service instance identifier.

3.2.7 PASS-THROUGH MODE OF OPERATION

3.2.7.1 As an optional feature, the proxy shall support a special ‘pass-through’ mode of
operation, in which processing of the proxy is modified as defined by the following
specifications. The means by which this mode of operation shall be enabled is defined and
documented by the implementation.

NOTES

1 The pass-through mode is required for a gateway in order to support end-to-end
identification and authentication, and preservation of other parameters set by the
proxy in end-systems.

2 An implementation might support enabling and disabling of the pass-through mode
by a parameter in the configuration database or might provide a special version of the
proxy for use in a gateway.

3.2.7.1.1 The proxy shall not insert the local application identifier into a BIND invocation
or a BIND return received from its local client, but use the parameter in the operation object.
If the proxy needs to generate a BIND return on its own behalf (see 3.2.6.2.1.2), it shall insert
the local application identifier as responder identifier. In these cases, the BIND return shall
not include credentials.

NOTE – This modifies 3.2.6.2.2 and 3.2.6.2.3.4.

CCSDS 914.0-M-1 Page 3-19 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.7.1.2 When receiving a BIND invocation from its local client, the proxy shall use the
initiator identifier in the operation object, to determine the authentication mode. The peer
identifier for the association shall remain undefined initially.

NOTE – This modifies 3.2.6.2.3. The peer identifier is assigned to the association as
specified in 3.2.7.1.3. The procedure specified here implies that all responders
linked to one initiator must have the same authentication mode. In cases where
this constraint is not acceptable, different initiator identifiers must be used for
different authentication modes.

3.2.7.1.3 The proxy shall process a BIND return PDU received from the peer proxy on an
association in the state ‘bind pending’ as defined by the following specifications.

NOTE – This modifies 3.2.6.2.4.

3.2.7.1.3.1 If the responder is not registered, it shall abort the association with the
diagnostic ‘access denied’ and generate an access violation alarm.

3.2.7.1.3.2 If the responder is registered, but the authentication mode differs from the one
assigned to the association, the proxy shall abort the association with the diagnostic ‘other
reason’.

3.2.7.1.3.3 If the responder is registered and the authentication mode matches the one
assigned to the association, the proxy shall assign the identifier and the security attributes of
the responder to the association.

3.2.7.1.4 The proxy shall not generate credentials for PDUs transmitted to the peer proxy
but use the credentials parameter of the operation object passed by its client.

NOTE – This modifies 3.2.6.3.3. Note that the proxy shall perform authentication of
PDUs as defined in 3.2.6.3.1.

3.2.7.2 In the pass-through mode of operation, dynamic port registration shall not be
required. The lack of dynamic port registration may imply restrictions, which must be
clearly documented for an implementation.

NOTES

1 This modifies 3.2.5.1.

2 On a gateway, the responder port identifier is not known in advance of an incoming
BIND invocation. An example for restrictions that might be implied is that only a
single instance of the proxy can be used within the gateway and all associations
bound via the same port have to be handled by a single process.

CCSDS 914.0-M-1 Page 3-20 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.8 LOGGING AND NOTIFICATION

3.2.8.1 The proxy shall generate log messages for important events and enter them to the
system log of the hosting system using the interface ISLE_Reporter, passed to its
configuration method.

NOTE – The arguments to be supplied with a log message are specified in A9.2. Specific
requirements and constraints on how this interface must be used are defined in 3.6.2.

3.2.8.2 The log messages generated by the proxy shall include, but not be limited to those
explicitly defined in this section.

NOTE – Guidelines for selection of the events that are entered to the log are defined in
3.6.2.

3.2.8.3 The proxy shall notify the application of the events defined in 3.6.2.6.

3.2.8.4 The log messages and notifications shall be defined and documented by
implementations of the API Proxy.

3.2.8.4.1 Each log message shall be identified by a unique number, which is referenced in
the documentation and passed to the interface ISLE_Reporter, when the message is
logged.

3.2.8.4.2 Log message identifiers in the range 0 to 999 shall be reserved for use by this
Recommended Practice and supplemental Recommended Practice documents for service-
specific APIs. These log message identifiers shall not be used for messages defined by
implementations.

NOTE – This version of the specification does not define any log messages. Identifiers
are reserved for potential future use. Beside this constraint, each component
implementation can independently assign log message identifiers, as the
component identification is also passed to the interface ISLE_Reporter.

3.2.9 DIAGNOSTIC TRACES

NOTE – Support for diagnostic traces is an optional feature. This subsection contains
specific requirements for the proxy. Further general specifications concerning
the events that are traced and the information entered in trace records are
provided in 3.6.3.

3.2.9.1 The proxy shall provide a feature to generate trace records for events and to pass
them to the interface ISLE_Trace.

3.2.9.1.1 A trace for a specific association can be started and stopped via the interface
ISLE_TraceControl provided by association objects.

CCSDS 914.0-M-1 Page 3-21 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.9.1.2 Traces started via the interface ISLE_TraceControl exported by the proxy
shall include all associations as well as events that cannot be associated with a specific
association. When tracing is stopped via the interface of the proxy, all traces started for
individual associations shall be stopped as well.

3.2.9.1.3 After creation, all traces in the proxy shall be disabled.

3.2.10 EXECUTION CONTEXT

3.2.10.1 Processes

3.2.10.1.1 Every instance of the proxy component shall exist within a single application
process and provide interfaces only to other components in the same process.

3.2.10.1.2 For a given proxy implementation, the creator function shall ensure that a single
instance of the proxy component is created within one process. Proxy implementations shall
be distinguished by the protocol they use for communication with the peer proxy. The
protocol identifier shall be available via the administrative interface of the proxy.

NOTE – Several proxies using different communications technologies or different
protocols can exist within one process. The protocol identifier is required to
distinguish different proxies and to route outgoing BIND invocations to the
correct proxy instance.

3.2.10.1.3 The proxy is able to support the following configuration of processes, service
instances, and communication ports, for associations in the initiator role and for associations
in the responder role.

NOTE – The meaning of the term communication port depends on the technology. It can
refer to an end-point of a transport or session connection, an object reference, or
any other address or routing information by which PDUs are routed to a given
process.

3.2.10.1.3.1 A process shall handle all service instances using one or more communication
ports.

3.2.10.1.3.2 Service instances using the same communication port may be distributed to
different existing processes in a manner defined by the application.

NOTES

1 Depending on the technology and its specific use by the proxy, the configuration
defined in 3.2.10.1.3.2 can require a separate process handling all or part of the
interface to the communications service provider. Such processes are considered part
of the proxy infrastructure. Routing of BIND invocations might be based on
technology-specific addressing or on the service instance identifier. The dynamic

CCSDS 914.0-M-1 Page 3-22 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

port-registration procedure defined in 3.2.5 can be used to establish the associated
routing path.

2 Reference [J3] provides examples for architectures that can be supported by a proxy
implementing these specifications.

3 This version of the specification does not include launching of application processes
as a result of reception of a BIND invocation. Use of this technique is not excluded,
but cannot be expected from a conforming implementation.

3.2.10.2 In Process Threads

3.2.10.2.1 For the interaction with its client, the proxy shall provide at least one of the
behaviors defined in 3.7 as well as the control interface associated with the provided behavior.

3.2.10.2.1.1 An implementation may provide more than one of the specified behaviors. If
that option is selected the implementation shall specify the means by which the desired
behavior can be selected.

NOTE – An implementation may support selection of the behavior by off-line
configuration, or may support dynamic selection by call of a specific start function.

3.2.10.2.1.2 The proxy shall provide the same behavior for all exported interfaces.

3.2.10.2.1.3 The proxy shall expect that the complementary interfaces provided by the client
and used by the proxy have the same behavior.

3.2.11 CONFIGURATION

3.2.11.1 The proxy can be configured for a specific deployment environment by definition
of parameters in a configuration database.

NOTE – For the operation of the proxy, an implementation may additionally require that
supporting programs or external systems have been installed, configured in a
specific manner, and have been started. Such requirements must be documented
for an implementation together with a reference to the relevant installation and
operating instructions.

3.2.11.1.1 The detailed content, the structure, and the format of the configuration database
are implementation specific and are documented for an implementation together with the
procedures for entry and update of configuration parameters.

NOTE – This specification does not prescribe how the database is created and how it is
accessed. The configuration database may consist of a simple text file or a set of
files, or it may be distributed to one or more directory systems or management
information databases.

CCSDS 914.0-M-1 Page 3-23 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.11.1.2 Modification of the configuration database shall be considered a maintenance
activity. The procedures for entry and update of configuration parameters may require the
proxy to be terminated and restarted for the modifications to become effective.

3.2.11.1.3 The proxy shall specify a configuration file, which provides all information
required by the proxy to access the configuration database. The full path name of this file
shall be passed to the Configure() method of the administrative interface.

NOTE – The configuration file might contain all configuration parameters or might
contain references to other files or information that enables the proxy to query
some database for the configuration parameters.

3.2.11.2 The information in the configuration database of the proxy shall include but not be
limited to:

a) configuration parameters required for configuration and initialization of the data
communications system such as local addresses, operational modes, etc.;

b) the acceptable delay between failure of the data communication service and the
associated report by the proxy;

c) a specification whether the proxy shall support associations in the responder role, in
the initiator role, or both;

d) mapping of the logical responder port identifiers specified by CCSDS to address
information;

e) one or more local responder port identifiers on which a proxy supporting associations
in the responder role shall accept BIND invocations;

f) the list of SLE service types supported by all components in the installation, and for
each service type the list of version numbers that can be supported;

NOTE – Version negation is not supported by this Recommended Practice, see 1.2.2
item a).

g) the identifier and security attributes of the local SLE application;

h) the list of registered peer applications including, for each application, the identifier,
authentication mode, and the security attributes (if used);

i) the acceptable delay between the time credentials have been created and the time of
authentication;

j) the maximum number of incoming PDUs that shall be queued according to the
definitions in 3.2.3.1;

k) the maximum number of PDUs that shall be queued for transmission;

l) the mode of operation, with the possible values ‘default’ and ‘pass-through’.

NOTE – The pass-through mode of operation is defined in 3.2.7.

CCSDS 914.0-M-1 Page 3-24 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.12 INITIALIZATION, START-UP, TERMINATION, AND SHUTDOWN

3.2.12.1 The proxy must be initialized by a call to the method Configure() of the
interface ISLE_ProxyAdmin, passing it the name of the configuration file and the
interfaces of other components.

NOTE – The interfaces needed by the proxy and the exact signature are defined in A7.

3.2.12.1.1 When the method Configure() is called, the proxy shall check the
configuration on completeness and consistency. If any of the checks fail, the proxy shall
generate appropriate error messages to the log and return a result code indicating a
configuration error.

3.2.12.1.2 If the configuration database is correct, the proxy shall perform all actions
required to configure itself and then any data communication products it uses. If there are any
errors, the proxy shall log errors indicating the reason and return an error code to the client.

3.2.12.1.3 Only when all initialization procedures have been completed successfully and the
proxy is ready for operation, it shall return a positive result code.

3.2.12.2 Operation of the proxy shall be started by a call to the start method associated with
the behavior selected according to 3.2.10.2.1. The proxy shall only start the operation if the
initialization has been completed with success. Otherwise, the method shall return an error.

NOTES

1 The start method is defined by the control interface associated with the selected
behavior. Control interfaces are specified in A6.1.1 and A6.1.6.

2 The specification implies that a proxy supporting associations in the responder role
shall start listening for incoming BIND invocations only after call of the start method.

3.2.12.3 Operation of the proxy shall be terminated by a call to the terminate method
associated with the behavior selected according to 3.2.10.2.1. When this method is called,
the proxy shall stop processing and revert to the state it had after configuration and before the
start method was invoked.

NOTE – The terminate method is defined by the control interface associated with the
selected behavior. Control interfaces are specified in A6.1.1 and A6.1.6.

3.2.12.3.1 If any associations are still active, the proxy shall abort these associations.

3.2.12.3.2 The proxy shall stop listening on the network interface, if applicable, and release
all resources it has allocated after the call to the start function.

3.2.12.3.3 A proxy must expect that other proxies using the same communication
infrastructure exist on the system and must make sure that their operation is not affected by
termination activities.

CCSDS 914.0-M-1 Page 3-25 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.12.4 The proxy shall be instructed to shutdown by a call to the method ShutDown() in
its administrative interface.

3.2.12.4.1 The proxy shall reject the request when it is still operating.

NOTE – In this case, the client shall be required to invoke the terminate method first.

3.2.12.4.2 The proxy shall release all interfaces of other components, to which it still holds
references, delete all internal objects, and release any other resources it has allocated.

3.2.12.4.3 The proxy shall ensure that all objects of the component are deleted when clients
holding a reference to interfaces have released these references.

3.2.12.4.4 When the method returns with success, the proxy has ceased to exist.

3.2.13 COMPONENT OBJECTS AND INTERFACES

3.2.13.1 The component API Proxy shall implement the following component objects and
interfaces:

NOTE – Component objects are defined in annex D of this specification. As explained
there, a component object is an externally visible entity that may be implemented
by a single object or by several internal objects, which co-operate to provide the
required external view. As specified in annex D, every component object
supports the interface IUnknown in addition to the interfaces listed in this
subsection. The interfaces referenced in this subsection are specified in annex A.

a) a single instance of the API Proxy, which shall export the following interfaces and
support navigation between these interfaces via the method QueryInterface():

1) the interface ISLE_ProxyAdmin;

2) the interface ISLE_AssocFactory if the proxy supports associations in the
initiator role;

3) the interface ISLE_Sequential if the proxy supports ‘sequential interface
behavior’ as specified in 3.7.2;

4) the interface ISLE_Concurrent if the proxy supports ‘concurrent interface
behavior’ as specified in 3.7.2; and

5) the interface ISLE_TraceControl if the proxy supports diagnostic traces as
specified in 3.2.9;

b) association objects, which shall export the following interfaces and support
navigation between these interfaces via the method QueryInterface():

CCSDS 914.0-M-1 Page 3-26 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – A separate object shall be provided for every data communication
association.

1) the interface ISLE_SrvProxyInitiate; and

2) the interface ISLE_TraceControl if the proxy supports diagnostic traces as
specified in 3.2.9;

c) one or more objects for processing of external events, which shall export the interface
ISLE_EventProcessor if the proxy supports ‘sequential interface behavior’;

d) one or more objects for processing of a timeout, which shall export the interface
ISLE_TimeoutProcessor if the proxy supports ‘sequential interface behavior’.

3.3 API SERVICE ELEMENT

3.3.1 FEATURES

3.3.1.1 The service element shall create, configure, maintain, and delete service instances,
see 3.3.2.

3.3.1.2 The service element shall provide interfaces to generate operation objects with
initialized parameters according to the configuration of a service instance, see 3.3.3.

3.3.1.3 The service element shall handle binding and unbinding of service instances, see 3.3.4.

3.3.1.4 The service element shall enforce conformance of the protocol data units exchanged
to the state tables defined in the CCSDS Recommended Standards for SLE transfer services
as far as these do not refer to events and procedures related to service production.

NOTE – A detailed specification of the state tables processed by the service element is
provided in section 4. These state tables complement the specifications in this
section. They are considered mandatory for a conforming implementation.

3.3.1.5 The service element shall ensure that the parameters of SLE protocol data units
conform to the specification in the CCSDS Recommended Standards for SLE transfer
services.

NOTE – Processing of SLE Protocol Data Units is detailed in 3.3.5.1.

3.3.1.6 The service element shall handle invocation identifiers and timeout monitoring for
operation returns, see 3.3.5.2.

3.3.1.7 The service element shall implement the transfer buffer for return link services
including the procedures for discarding of buffered data in the delivery mode timely online
and flow control for the delivery modes complete online and offline, see 3.3.5.3.

CCSDS 914.0-M-1 Page 3-27 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.1.8 The service element shall implement flow control for TRANSFER-DATA
invocations for forward link services, see 3.3.5.4.

3.3.1.9 For an SLE service provider, the service element shall provide an interface for
updating service parameters and status parameters by the client, see 3.3.5.5.

3.3.1.10 The service element shall process GET-PARAMETER and SCHEDULE-STATUS-
REPORT invocations received from the peer, see 3.3.5.5.

3.3.1.11 The service element shall generate entries to the log of the hosting system for all
important events, see 3.3.6.

3.3.1.12 The service element shall provide a feature to produce an event trace for the
complete service element and for individual service instances, see 3.3.7.

3.3.1.13 The service element shall support a range of execution environments with respect to
use of in-process threads, see 3.3.8.

3.3.1.14 The service element shall use a configuration database, which controls its operation
within a specific deployment environment, see 3.3.9.

3.3.2 SERVICE INSTANCE MANAGEMENT

3.3.2.1 Creation of Service Instances

3.3.2.1.1 A service instance shall be created on request of the application via the interface
ISLE_SIFactory.

3.3.2.1.1.1 The request to create a service instance shall identify the service type and the
role (service user or service provider). If the service element does not support the service
type or the role, it shall reject the request.

NOTE – An implementation may support service instances in the user role and in the
provider role concurrently. This feature enables an application to act as an SLE
service user for one service instance and as an SLE service provider for another
instance. However, an implementation may also restrict the role of the service
instances supported to either ‘user’ or ‘provider’.

3.3.2.1.1.2 For services in the user role, the request to create a service instance additionally
shall identify the version number of the specified service type. If the service element does
not support the specified version, it shall reject the request.

NOTES

1 The service instance shall use the version number to generate the BIND invocation
with the desired version number. Service instances in the provider role shall obtain

CCSDS 914.0-M-1 Page 3-28 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

the version number from the incoming BIND invocation. Checking of the version
number on the provider side is specified in 3.2.4.2.2.

2 The service types and versions supported by an implementation shall be identified in
the implementation specific documentation.

3.3.2.2 Configuration of Service Instances

3.3.2.2.1 When a service instance has been created, it must be configured using the
interface ISLE_SIAdmin.

3.3.2.2.1.1 For service instances in the responder role, additional configuration parameters
must be supplied via the service-type specific administrative interface specified by the
relevant supplemental Recommended Practice for the service-specific API.

3.3.2.2.1.2 The configuration parameters that must be set via the interface
ISLE_SIAdmin are:

a) the service instance identifier;

b) the peer identifier;

NOTE – The peer identifier is either the initiator identifier or the responder identifier.
If the service instance acts as an initiator in the BIND operation, the peer
identifier is used to check the parameter ‘responder identifier’ in the BIND
return PDU. If the service instance acts as a responder, the peer identifier is
used to check the parameter ‘initiator identifier’ in the BIND invocation
PDU.

c) the scheduled provision period defined by the start time and the stop time;

d) the initiator of the BIND operation (service user or service provider);

e) the responder port identifier; and

f) the value of the timeout in which returns must arrive for confirmed operations.

NOTE – These parameters are defined in the CCSDS Recommended Standards for SLE
transfer services.

3.3.2.2.1.3 Configuration of a service instance shall be terminated by a call to the method
ConfigCompleted() of the interface ISLE_SIAdmin. This method shall check the
configuration parameters on completeness and consistency and reject the configuration if a
deficiency is detected.

NOTE – Configuration parameters must not be modified after a successful return of the
method ConfigCompleted(). The effect of an attempt to set a parameter
when the initial configuration has completed is undefined.

CCSDS 914.0-M-1 Page 3-29 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.2.2.1.4 The checks performed for the common configuration parameters passed via the
interface ISLE_SIAdmin shall include the following:

a) the service instance identifier must be valid and unique for all service instances
currently handled by the service element;

NOTE – The validity of a service instance identifier is verified by the component ‘SLE
Utilities’ via the interface ISLE_SII.

b) for a service instance in the provider role the start and end time for the scheduled
provision period must be specified or must be set to NULL;

c) if the start time is set to NULL, the service instance shall assume that the provision
period begins after invocation of the method ConfigCompleted();

d) if the end time is set to NULL, the service instance shall assume that the provision
period never expires;

e) if the start and end time are specified, the start time must be earlier than the end time;

f) if the end time is specified the end time must not be in the past;

NOTE – A service instance in the user role shall not constrain the application with
respect to the time the service is requested. It shall accept the scheduled
provision period parameter if it is supplied, but shall not require it. If it is
supplied, it shall not further process it.

g) the responder port identifier must be defined in the configuration database of the
service element, if the service instance initiates the BIND operation.

NOTE – The responder port identifier is used by the service instance to select the
proxy instance to which the BIND invocation shall be sent.

3.3.2.2.1.5 For service instances in the provider role, checks performed on the
configuration shall include those defined for the specific service type in the relevant
supplemental Recommended Practice for the service-specific API.

3.3.2.2.1.6 If the service element does not support an option related to one of the
configuration parameters, the configuration shall be considered incorrect and shall be
rejected.

NOTE – For instance, an implementation might not support provider-initiated binding.

3.3.2.2.1.7 If the service instance responds to BIND invocations, the service element shall
register the responder port as part of the method ConfigCompleted() and reject the
configuration if port registration is not accepted by the proxy.

NOTE – Port registration is defined in 3.2.5.

CCSDS 914.0-M-1 Page 3-30 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.2.3 Deletion of Service Instances

3.3.2.3.1 A service instance shall only be deleted on request of the application.

3.3.2.3.1.1 If the state of the service instance is not ‘unbound’ at the time deletion is
requested, the service element shall reject the request.

NOTE – The application will have to abort the association before deleting the service
instance. The service element does not require that the scheduled provision
period has terminated when a service instance is deleted. (The states of a service
instance are defined in section 4.)

3.3.2.3.1.2 If the responder port has been registered at the proxy, the service element shall
request de-registration of the port before the service instance is actually deleted.

3.3.2.3.1.3 When deleting the service instance, the service element shall release all
resources allocated to the service instance as well as all interfaces used by the service
instance.

3.3.2.4 End of Provision Period

When the scheduled provision period of a service instance supporting the provider role
expires, the service element shall inform the application via the interface
ISLE_ServiceInform.

NOTES

1 If the end time of the provision period was set to NULL during configuration of the
service instance, the service element shall assume that the provision period never
expires.

2 The service element shall not monitor the provision period for service instances in the
user role and shall not inform the application when the period ends.

3.3.3 CREATION AND CONFIGURATION OF OPERATION OBJECTS

3.3.3.1 Service instances shall export the interface ISLE_SIOpFactory to create pre-
configured operation objects.

3.3.3.1.1 A service instance shall only return operation objects which are defined for the
service type and version it supports, and which are invoked by applications in the role it
implements.

NOTE – This specification implies that a RAF service instance in the user role generates a
START operation but does not generate a TRANSFER-DATA operation.

CCSDS 914.0-M-1 Page 3-31 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.3.1.2 The service instance shall use the interface ISLE_OperationFactory
exported by the component ‘SLE Operations’ to create the operation object, and set selected
parameters of the operation object according to its own configuration.

NOTE – The parameters that are set by the service instance are defined for each operation
object in annex A or in the supplemental Recommended Practice documents for
service-specific APIs.

3.3.4 BINDING AND UNBINDING

3.3.4.1 User Initiated Binding

NOTE – Further details of the BIND and UNBIND operations are specified in the state
tables for service instances in section 4. These state tables complement the
following specifications. They are considered mandatory for a conforming
implementation.

3.3.4.1.1 Service Instances in the User Role

3.3.4.1.1.1 A service instance supporting the user role and the BIND-initiator role shall
initiate the BIND operation when receiving a BIND invocation request from the application
in the state ‘unbound’ via the interface ISLE_ServiceInitiate. It shall initiate the
UNBIND operation when receiving an UNBIND invocation in the state ‘bound’.

3.3.4.1.1.2 The service instance shall create an association via the proxy interface
ISLE_AssocFactory and use the interface ISLE_SrvProxyInitiate provided by
the association for binding, unbinding and service provisioning.

NOTE – This specification does not prescribe when the association object is created. An
implementation might create a new association when the BIND operation is
initiated. Alternatively an implementation might create the association object
when the service instance is created and use it throughout the lifetime of the
service instance.

3.3.4.1.1.3 The configuration database of the service element shall contain a table mapping
port identifiers to protocol identifiers. The service element shall use this table and the
responder port identifier in the service instance to select the proxy instance, from which it
will request creation of the association.

NOTE – The protocol identifier supported by a proxy is specified when the proxy is registered
with the service element. The associated procedures are defined in 3.3.10.

3.3.4.1.1.4 The service element shall insert the peer identifier into the parameter ‘responder
identifier’ of the BIND operation object passed to the proxy.

CCSDS 914.0-M-1 Page 3-32 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – This parameter is used by the proxy to retrieve information about the responder
from its configuration database. In addition, the proxy shall check the identifier
against the responder identifier in the BIND return PDU and take appropriate
actions if these do not match. See 3.2.6.2 for further details.

3.3.4.1.1.5 The BIND and UNBIND operations shall be performed according to the general
rules specified in 3.3.5.

3.3.4.1.2 Service Instances in the Provider Role

3.3.4.1.2.1 A service element supporting service instances in the responder role shall
implement the interface ISLE_Locator, which shall be used by the proxy to notify the
service element of a BIND invocation received via the network.

3.3.4.1.2.2 When receiving a notification of a BIND invocation via the method
LocateInstance() of the interface ISLE_Locator, the service element shall analyze
the PDU. If the BIND invocation is acceptable, it shall link the requested service instance
with the association using the pointer to the interface ISLE_SrvProxyInitiate, and
return a reference to the interface ISLE_SrvProxyInform of the service instance.

3.3.4.1.2.3 The service element shall perform the checks in 3.3.4.1.2.4 to 3.3.4.1.2.10 on
the BIND invocation in the sequence specified. If any of the checks fail, it shall not pass the
BIND invocation to the application, but reject the BIND invocation. If the checks are
performed within the method LocateInstance(), this method shall return an
appropriate error code. If the checks are performed by the service instance after having
received the BIND invocation via the interface ISLE_SrvProxyInform, it shall generate
a BIND return with a negative result and the appropriate diagnostic.

NOTE – This specification does not prescribe whether these checks are performed by the
method LocateInstance() of the interface ISLE_Locator, or by the
service instance when receiving the BIND invocation via the interface
ISLE_SrvProxyInform. The checks must be performed before the BIND
invocation is passed to the application and the appropriate method to reject errors
must be applied.

3.3.4.1.2.4 The service instance identifier in the BIND invocation must match the identifier
of an existing service instance. If the check fails, the BIND invocation shall be rejected with
the diagnostic ‘no such service instance’.

3.3.4.1.2.5 The initiator identifier in the BIND invocation must match the peer identifier
defined for the service instance. If the check fails, the BIND invocation shall be rejected
with the diagnostic ‘service instance not accessible to this initiator’. In addition, the service
element shall enter an ‘access violation alarm’ in the system log and notify the application
using the interface ISLE_Reporter.

CCSDS 914.0-M-1 Page 3-33 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.4.1.2.6 The information included into the access violation alarm shall include, but not
be limited to:

a) the initiator identifier in the BIND invocation; and

b) the service instance identifier of the service instance.

NOTE – Some of this information can be conveyed by standard arguments of the
LogRecord() function in the interface ISLE_Reporter. This information
should not be duplicated in the record itself.

3.3.4.1.2.7 The service type of the service instance must match the one indicated in the
BIND invocation. If the check fails, the BIND invocation shall be rejected with the
diagnostic ‘inconsistent service type’.

3.3.4.1.2.8 The version number in the BIND invocation must be supported by the service
instance. If the check fails, the BIND invocation shall be rejected with the diagnostic
‘version not supported’. Otherwise the service instance shall memorize the version number
and ensure that the service is provided as specified for that version.

NOTE – As the API Proxy already checks the version number against the versions
identified in its configuration database (see 3.2.4.2.2.5), reception of an
unsupported version number by the service instance is an indication of a
configuration problem. Therefore, implementations should issue an alarm if that
happens.

3.3.4.1.2.9 The time of the request must be within the scheduled provision period of the
service instance. If the check fails, the BIND invocation shall be rejected with the diagnostic
‘invalid time’.

3.3.4.1.2.10 The state of the service instance must be UNBOUND. If the check fails, the
BIND invocation shall be rejected with the diagnostic ‘already bound’.

3.3.4.1.2.11 The UNBIND operation for a service instance in the responder role shall be
performed according to the general rules specified in 3.3.5. The additional specifications in
3.3.4.1.2.12 to 3.3.4.1.2.14 shall apply to a service instance supporting the provider role.

3.3.4.1.2.12 If the parameter ‘unbind reason’ in the UNBIND invocation is set to ‘suspend’,
the following steps shall be performed. The state of the service instance shall be set to
‘unbound’, the service parameters shall be reset to the initial state, if applicable, and the
service instance is ready to receive a new BIND invocation.

NOTE – Handling of the service parameters in the case of an UNBIND is specified
individually for the every service type.

3.3.4.1.2.13 If the parameter ‘unbind reason’ in the UNBIND invocation is set to ‘end’, the
service element shall inform the application that the scheduled provision period has been
prematurely terminated.

CCSDS 914.0-M-1 Page 3-34 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – Further BIND invocations shall be rejected with the reason ‘invalid time’, if the
service instance has not yet been deleted by the application.

3.3.4.1.2.14 When the scheduled provision period of a service instance supporting the
provider role ends and the state of the service instance is not ‘unbound’, the service element
shall abort the association.

3.3.4.2 Aborting Associations

3.3.4.2.1 The service element shall abort an association in the following cases:

a) the application invokes the PEER-ABORT operation;

b) abort of the association is explicitly required by any other specification for the service
element in this document; or

c) the service element cannot continue processing of the association, because it is
affected by major problems.

NOTE – This specification implies that the proxy might abort the association in the case of
a catastrophic failure also when that case is not specified in this document.

3.3.4.2.2 Whenever the service element aborts an association, it shall also forward a
PEER-ABORT invocation to the application. It shall set the parameter ‘originator’ to
‘service element’ in the operation objects passed to the proxy and to the application.

3.3.4.2.3 Whenever an association used by a service instance in the provider role is aborted,
for any reason and by any party, the state of the service instance shall be set to ‘unbound’.
The service parameters shall be reset to the initial state, if applicable, and the service instance
is ready to receive a new BIND invocation.

3.3.4.3 Releasing Resources

3.3.4.3.1 Following completion of the UNBIND operation and following an abort of the
association, the service element shall release the resources allocated to the association as
defined by the following specifications.

3.3.4.3.1.1 For a service instance in the provider role, the service element shall release the
interface of the association object provided by the proxy.

NOTE – A proxy supporting associations in the responder role creates a new association
for every incoming bind request and deletes the association object when the
association has terminated. To enable final deletion, the service element must
release all interfaces.

CCSDS 914.0-M-1 Page 3-35 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.4.3.1.2 For a service instance in the user role, the service element shall release the
association interfaces and request the proxy to delete the association object when it is no
longer needed.

NOTE – This specification does not prescribe when the association object in the initiator
role is deleted. Implementations are free to use a single association object during
the lifetime of the service instance, or a new association for every BIND. An
implementation is required to release an association object that has been created
for a service instance latest when the service instance itself is deleted.

3.3.4.3.1.3 The service element shall clear the list of pending local and remote returns,
cancel any timers still running, and release all operation objects on which it holds references.

3.3.4.3.1.4 If the service instance holds a transfer buffer, it shall release the buffer and all
data it may still contain.

3.3.5 SERVICE PROVISIONING

3.3.5.1 Processing of SLE Protocol Data Units

3.3.5.1.1 Protocol Data Units Received from the Application

3.3.5.1.1.1 The service element shall accept SLE protocol data units in the form of
operation objects from the application via the interface ISLE_ServiceInitiate. It
shall process them as defined in this subsection and forward them to the proxy via the
interface ISLE_SrvProxyInitiate for transfer on the association linked to the service
instance.

3.3.5.1.1.2 The service element shall perform the checks in 3.3.5.1.1.3 to 3.3.5.1.1.6 on the
PDUs received from the application. If any of the checks fails, the service element shall not
forward the PDU to the proxy but reject the PDU by an appropriate return code to the
function.

3.3.5.1.1.3 The PDU must be defined for the service type supported by the service instance
and must be compatible with the role of the service instance (user or provider).

3.3.5.1.1.4 The parameters passed with the operation object must be complete, in range,
and consistent with the configuration of the service instance.

NOTES

1 An example for a consistency check is the verification that the service type in a BIND
invocation matches the type of the service instance.

2 Operation objects are required to perform all checks that can be done on the data
passed without any further knowledge about the context and to provide an interface
by which these checks can be invoked. That feature should be used by the service

CCSDS 914.0-M-1 Page 3-36 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

element. However, it must be considered that some checks require further knowledge
about the state and configuration of the service instance. These checks cannot be
performed by the operation objects. The checks performed by the operation objects
are defined in annex A and in the supplemental Recommended Practice documents
for service-specific APIs.

3 The checks do not include those parameters that are handled by the service instance
itself. If such parameters are checked by the operation object, they must be correctly
set before checking is requested.

3.3.5.1.1.5 A return for a confirmed operation must be conveyed by an operation object
that has previously been passed to the application by the service instance.

3.3.5.1.1.6 The PDU must be valid in the state of the service instance.

NOTE – In a multithreaded environment, the application might not yet have become
aware of a state change in some cases. If so, the return code does not indicate an
error but informs the application of the state change. These cases are specifically
marked in the state tables in section 4.

3.3.5.1.1.7 With a return code indicating success, the service element shall guarantee that
the PDU has been accepted by the proxy for transmission.

NOTE – The following specifications (3.3.5.1.1.8 to 3.3.5.1.1.10) for processing of error
cases also apply when a PDU has been generated by the service element itself.
The statements referring to return codes do not apply in that case.

3.3.5.1.1.8 When the proxy rejects a PDU with a return code indicating that the
transmission queue is full, the service element shall abort the association with the
PEER-ABORT operation. In addition, it shall set the code returned to the application for the
affected PDU to ‘overflow’.

NOTE – Because of the flow control mechanisms built into the API, queue overflow
cannot be caused by transfer of space-link data units. It can only happen because
of excessive generation of other events related to the production process or
excessively high status reporting frequencies. In these cases, the application
would have no other option for handling the problem.

3.3.5.1.1.9 When the proxy rejects the transfer request with a code that informs the service
element of a state change, the service element shall return the corresponding code to the
application and not abort the association.

NOTE – In such cases, it must be expected that the event causing the state change is
already pending and will be available to the service element soon.

3.3.5.1.1.10 When the proxy rejects the transfer request with a code that indicates a protocol
error, the service element shall abort the association. In addition, it shall generate a log

CCSDS 914.0-M-1 Page 3-37 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

message providing as much information as possible to investigate the problem, and notify the
application via the interface ISLE_Reporter.

3.3.5.1.1.11 When the service element has passed an unconfirmed invocation or a return to
the proxy, it shall release the operation object holding the PDU.

3.3.5.1.1.12 With the exception of PEER-ABORT invocations and invocations that are
inserted into the transfer buffer for return services, the service element shall ensure that
PDUs received from the application are passed to the proxy in the sequence received.

NOTE – Handling of PEER-ABORT invocations is specified in 3.3.4.2. Buffering of
PDUs for return services is specified in 3.3.5.3.

3.3.5.1.2 Protocol Data Units Received from the Proxy

3.3.5.1.2.1 The service element shall receive SLE protocol data units in the form of
operation objects from the proxy and process them as specified in this subsection. If the
invocations and returns are accepted by the service element, it shall forward them to the
application unless specified differently for specific operations.

3.3.5.1.2.2 The service element shall perform the following checks on the PDUs received
from the proxy. If any of the checks fails, the service element shall not forward the PDU to
the application, but shall respond by rejecting the PDU locally (see 3.3.5.1.2.3), rejecting the
PDU via the protocol (see 3.3.5.1.2.4), or by aborting the association.

NOTE – The type of response is defined for the individual tests.

a) The PDU must be defined for the service type supported by the service instance. If
the check fails, the PDU shall be rejected locally.

b) The PDU must be compatible with the role of the service instance (user or provider).
If the check fails, the service element shall abort the association with the diagnostic
‘protocol error’.

NOTE – The proxy is not aware of the user or provider role of the service instance and
shall not check the PDUs for compatibility with this role.

c) The parameters passed with the PDU must be complete, in range, and consistent with
the configuration of the service instance. If the check fails, the PDU shall be rejected
via the protocol.

NOTE – See also the note on 3.3.5.1.1.4.

d) An invocation PDU must be consistent with the configuration of the service instance.
If the check fails, the PDU shall be rejected via the protocol.

CCSDS 914.0-M-1 Page 3-38 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – An example for a consistency check for an invocation is the verification that a
FSP service instance has invoke directive capability when receiving an
INVOKE-DIRECTIVE invocation. Consistency checks are defined by the
supplemental Recommended Practice documents for service-specific APIs.

e) A return PDU must be conveyed by an operation object that has previously been
passed to the proxy by the service instance. If the check fails, the PDU shall be
rejected locally.

f) The PDU must be valid in the state of service instance. If the check fails, the type of
response shall depend on the PDU and on the state of the service instance.

NOTE – The type of response is defined in the state tables in section 4.

3.3.5.1.2.3 The service element shall reject a PDU locally by returning an error code to the
function which passes the PDU. In this case, it shall not modify the state of the service
instance.

3.3.5.1.2.4 The action taken by the service element to reject a PDU via the protocol shall
depend on the PDU type.

NOTE – If the PDU is rejected via the protocol, the method passing the PDU shall return a
result code indicating success.

a) For a confirmed invocation PDU, the service element shall generate a return with a
negative result and the appropriate diagnostic and forward this to the proxy for
transmission.

b) For an unconfirmed invocation PDU or a return PDU, the service element shall abort
the association with PEER-ABORT and the appropriate diagnostic.

3.3.5.1.2.5 When the service element has passed an unconfirmed invocation or a return to
the application, it shall release the operation object holding the PDU.

3.3.5.1.2.6 With the exception of PEER-ABORT invocations, the service element shall
ensure that PDUs received from the proxy are passed to the application in the sequence
received.

NOTE – Handling of PEER-ABORT invocations is specified in 3.3.4.2.

3.3.5.2 Processing of Confirmed Operations

3.3.5.2.1 The service element shall process invocations of confirmed operations issued by
the application as follows:

a) The service element shall assign an invocation identifier according to the rules
specified in the CCSDS Recommended Standards for SLE transfer services and pass
it to the operation object.

CCSDS 914.0-M-1 Page 3-39 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – It is noted that the confirmed operations BIND and UNBIND do not carry
invocation identifiers. Therefore, this specification does not apply to these
operations.

b) When the operation object has been accepted by the proxy for transmission, the
service element shall place the object on a list of pending remote returns. In addition,
it shall start a return timer for the object.

NOTE – The timeout value shall be passed to the service instance as part of its
configuration.

c) When the proxy returns the operation object via the interface
ISLE_SrvProxyInform, the service element shall cancel the return timer,
remove the object from the list of pending remote returns, forward it to the
application, and release the object.

d) If the return timer expires, the service element shall abort the association with the
diagnostic ‘return timeout’.

3.3.5.2.2 The service element shall process invocations of confirmed operations issued by
the proxy as follows:

a) The service element shall verify that the invocation identifier of the operation object
is unique for all operation objects on the list of pending local returns. If this check
fails, the service element shall add a negative result and a diagnostic ‘duplicate
invocation identifier’ to the object and forward it to the proxy for transmission.

NOTE – It is noted that the confirmed operations BIND and UNBIND do not carry
invocation identifiers. Therefore, this specification does not apply to these
operations.

b) The service element shall add the operation to the list of pending local returns.

c) When the application returns the operation object via the interface
ISLE_ServiceInitiate, the service element shall remove the object from the list of
pending local returns, forward it to the proxy for transmission, and release the object.

3.3.5.3 Buffering and Flow Control for Return Link Services

3.3.5.3.1 General Specifications

3.3.5.3.1.1 Service instances for return link services shall implement the transfer buffer
defined by the CCSDS Recommended Standards for SLE return link services (references [4],
[5] and [6]).

CCSDS 914.0-M-1 Page 3-40 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – The specification of the procedure assumes use of a single transfer buffer. An
implementation may use multiple buffers to increase performance. However, an
implementation must ensure that only a single buffer is queued for transmission
in the delivery mode timely online.

3.3.5.3.1.2 The service element shall use the operation object TRANSFER-BUFFER for
buffering and for transfer of the buffer to and from the proxy.

3.3.5.3.1.3 The size of the transfer buffer and the value of the release timer are
configuration parameters passed to the service instance during configuration. The associated
interface is defined by the supplemental Recommended Practice documents for return link
service-specific APIs.

NOTE – The size of the transfer buffer is defined by the number of PDUs that can be
inserted into the buffer.

3.3.5.3.1.4 A service instance in the provider role shall buffer and transmit data as follows:

NOTE – Variations of this basic procedure depending on the delivery mode are specified
in 3.3.5.3.2.1, 3.3.5.3.3.1, and 3.3.5.3.4.1.

a) The service element shall insert TRANSFER-DATA invocations and
SYNC-NOTIFY invocations into the buffer in the sequence received from the
application.

b) When the buffer is full, or when the SYNC-NOTIFY invocation indicates ‘end of
data’, the service element shall forward the complete buffer to the proxy requesting it
to issue a notification when the buffer has been transmitted.

NOTE – Notifications for transmitted PDUs are specified in 3.2.3.2.

c) When the proxy cannot transmit the buffer immediately, the service element shall
memorize that a buffer is queued until it receives the notification via the method
PDUTransmitted().

d) After transmission of the transfer buffer, the service element shall create a new
buffer.

3.3.5.3.2 Delivery Modes Timely Online and Complete Online

3.3.5.3.2.1 For the delivery modes timely online and complete online, a service instance in
the provider role shall handle the release timer and the associated procedure defined in the
CCSDS Recommended Standards for return link services (references [4], [5] and [6]).

a) The value of the release timer is a configuration parameter passed to the service
instance via the service-type specific interface defined in the supplemental
Recommended Practice documents for return link service-specific APIs.

CCSDS 914.0-M-1 Page 3-41 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) When the service element inserts the first PDU into an empty transfer buffer, it shall
start the release timer.

c) When the release timer expires and the transfer buffer is not empty the service
element shall transmit the buffer regardless of its fill-grade.

3.3.5.3.3 Delivery Mode Timely Online

3.3.5.3.3.1 For the delivery mode timely online, a service instance in the provider role shall
apply the following additional rules before transferring the buffer to the proxy:

a) When a buffer is already queued, the service element shall request the proxy to
discard the buffer.

b) If the return code from the proxy indicates that a buffer has been discarded, the
service element shall insert a SYNC-NOTIFY invocation, indicating ‘data discarded
due to excessive backlog’, at the beginning of the buffer.

NOTE – If data transfer for the previous buffer has already started or when the
notification that the buffer has been transmitted is already pending in a
different thread of control, the proxy shall indicate that no buffer has been
discarded.

3.3.5.3.4 Delivery Modes Complete Online and Offline

3.3.5.3.4.1 For the delivery modes complete online and offline, a service instance in the
provider role shall perform the following procedure to suspend data transfer when the
transmission capacity is exceeded.

a) When the buffer is due for transfer and a buffer is already queued, the service element
shall return a code to the application indicating ‘suspend data transfer’.

b) When receiving PDUs that must be buffered from the application in a period, in
which data transfer has been suspended, the service element shall reject the request
with a code indicating ‘data transfer suspended’.

c) When data transfer has been suspended and the service element receives the
notification that the previous buffer has been transmitted, it shall forward the current
buffer to the proxy, create a new buffer, and notify the application that data transfer
can be resumed.

NOTE – The notification to the application is passed by the method
ResumeDataTransfer() of the interface ISLE_ServiceInform.

CCSDS 914.0-M-1 Page 3-42 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.5.3.5 STOP Operation

3.3.5.3.5.1 When receiving a STOP return from the application, a service instance in the
provider role shall transmit the transfer buffer if it is not empty.

a) For the delivery mode timely online the service element shall apply the procedure
defined in 3.3.5.3.3.1.

b) For the delivery modes complete online and offline, the service element shall transfer
the buffer also when a buffer is already queued.

3.3.5.3.6 User Side Processing

3.3.5.3.6.1 When receiving a transfer buffer from the proxy, a service instance in the user
role shall extract the TRANSFER-DATA invocations and SYNC-NOTIFY invocations and
forward them to the application using individual operation objects. These objects shall be
forwarded in the sequence the invocations have been stored into the buffer.

3.3.5.4 Flow Control for Forward Services

3.3.5.4.1 A service instance in the user role supporting a forward link service shall
implement the following flow control procedure for the operation TRANSFER-DATA.

NOTE – The specification of the procedure assumes use of a single TRANSFER-DATA
invocation pending for transmission by the proxy. An implementation may
support multiple outstanding TRANSFER-DATA invocations to increase
performance.

3.3.5.4.2 When receiving a TRANSFER-DATA invocation from the application, the
service element shall forward it to the proxy requesting the proxy to issue a notification when
the buffer has been transmitted.

NOTE – Notifications for transmitted PDUs are specified in 3.2.3.2.

3.3.5.4.3 When the proxy cannot transmit the buffer immediately, the service element shall
return a code to the application indicating ‘suspend data transfer’.

3.3.5.4.4 When receiving a TRANSFER-DATA invocation in a period, in which data
transfer has been suspended, the service element shall reject the request with a code
indicating ‘data transmission suspended’.

3.3.5.4.5 When data transfer has been suspended and the service element receives the
notification that the previous TRANSFER-DATA invocation has been transmitted, it shall
notify the application that data transfer can be resumed.

NOTE – The notification to the application is passed by the method
ResumeDataTransfer() of the interface ISLE_ServiceInform.

CCSDS 914.0-M-1 Page 3-43 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.5.5 Handling of Service Parameters

3.3.5.5.1 A service instance in the provider role shall maintain all service parameters
defined in the CCSDS Recommended Standards for SLE transfer services. For service
parameters that are updated by the production process, the service instance shall provide an
interface for the application to pass the updated values.

NOTE – The interface to update service parameters is service-type specific and is defined
by the relevant supplemental Recommended Practice for the service-specific API.

3.3.5.5.2 A service instance in the provider role shall implement the GET-PARAMETER
operation by returning the value of the requested parameter. It shall not forward the
GET-PARAMETER invocation to the application.

3.3.5.5.3 A service instance in the provider role shall implement status reporting as defined
in the CCSDS Recommended Standards for SLE transfer services.

3.3.5.5.3.1 The service element shall not forward the SCHEDULE-STATUS-REPORT
invocation to the application, but perform all required actions internally.

3.3.5.5.3.2 When the SCHEDULE-STATUS-REPORT invocation requests periodic
transfer of status reports, the service element shall check the cycle period against the limits
specified in its configuration database and reject the request when the period is not within
these limits.

3.3.5.5.3.3 When status reports have been scheduled, the service element shall generate the
STATUS-REPORT invocation from the values of the service parameters at the time the
status report is due and send it without involvement of the application.

3.3.5.5.3.4 If the delivery mode of the service instance is ‘offline’, the service element shall
reject a SCHEDULE STATUS REPORT invocation with a negative return and the diagnostic
‘not supported in this delivery mode’.

NOTE – The CCSDS forward transfer services do not support the delivery mode ‘offline’.
Therefore, ‘not supported in this delivery mode’ is not a valid diagnostic code for
these services.

3.3.6 LOGGING AND NOTIFICATION

3.3.6.1 The service element shall generate log messages for important events and enter
them to the system log of the hosting system using the interface ISLE_Reporter, passed
to its configuration method.

NOTE – The arguments to be supplied with a log message are specified in annex A.
Specific requirements and constraints on how this interface must be used are
defined in 3.6.2.

CCSDS 914.0-M-1 Page 3-44 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.6.2 The log messages generated by the service element shall include, but not be limited
to those explicitly defined in this subsection.

NOTE – Guidelines for selection of the events that are entered to the log are defined in
3.6.2.

3.3.6.3 The service element shall notify the application of the events defined in 3.6.2.6.

3.3.6.4 The log messages and notifications shall be defined and documented by
implementations of the API Service Element.

3.3.6.4.1 Each log message shall be identified by a unique number, which is referenced in
the documentation and passed to the interface ISLE_Reporter, when the message is
logged.

3.3.6.4.2 Log message identifiers in the range 0 to 999 shall be reserved for use by this
Recommended Practice and its supplemental Recommended Practice documents for service-
specific APIs. These log message identifiers shall not be used for messages defined by
implementations.

NOTE – This version of the specification does not define any log messages. Identifiers
are reserved for potential future use. Besides this constraint, each component
implementation can independently assign log message identifiers, as the
component identification is also passed to the interface ISLE_Reporter.

3.3.7 DIAGNOSTIC TRACES

NOTE – Support for diagnostic traces is an optional feature. This subsection contains
specific requirements for the service element. Further general specifications
concerning the events that are traced and the information entered in trace records
are provided in 3.6.3.

3.3.7.1 The service element shall provide a feature to generate trace records for events and
to pass them to the interface ISLE_Trace.

3.3.7.1.1 A trace for a specific service instance can be started and stopped via the interface
ISLE_TraceControl exported by service instance objects.

3.3.7.1.2 When the argument forward in the method StartTrace() is set to true, the
service instance shall start tracing for all associations to which it is bound as long as tracing
is enabled. The service instance shall stop tracing by an association when StopTrace() is
called, if it has started tracing by the association.

NOTE – The service instance can only forward the request if the proxy supports tracing.

CCSDS 914.0-M-1 Page 3-45 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.7.1.3 Traces started via the interface ISLE_TraceControl exported by the service
element shall include all service instances as well as events that cannot be associated with a
specific service instance. When tracing is stopped via the interface of the service element, all
traces started for individual service instances shall be stopped as well.

3.3.7.1.4 When the argument forward in the method StartTrace() is set to true, the
service element shall start tracing for all proxies to which it is linked. The service element
shall stop tracing by a proxy when StopTrace() is called, if it has started tracing by the
proxy.

NOTE – The service instance can only forward the request if the proxy supports tracing.

3.3.7.1.5 After creation, all traces in the service element shall be disabled.

3.3.8 EXECUTION CONTEXT

3.3.8.1 Processes

3.3.8.1.1 Every instance of the component API Service Element shall exist within a single
application process and provide interfaces only to clients in the same process.

3.3.8.1.2 The creator function shall ensure that a single instance of the service element
component is created within one process.

3.3.8.2 In Process Threads

3.3.8.2.1 For the interaction with the application, the service element shall provide at least
one of the behaviors defined in 3.7 as well as the control interface associated with the
provided behavior.

3.3.8.2.1.1 The service element shall provide the same behavior for all interfaces exposed
to the application.

3.3.8.2.1.2 The service element shall expect that the complementary interfaces provided by
the application and used by the service element have the same behavior as the interfaces
provided to the application.

3.3.8.2.2 For the interaction with the proxy, the service element shall provide at least one of
the behaviors defined in 3.6 and control the proxy using the interface associated with that
behavior.

NOTE – The behavior provided towards the proxy need not be the same as the one
provided towards the application.

3.3.8.2.2.1 The service element shall provide the same behavior for all interfaces exposed
to the proxy.

CCSDS 914.0-M-1 Page 3-46 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.8.2.2.2 If the service element provides the sequential behavior towards the proxy, it
shall provide the event monitor and the timer handler defined in 3.7.2.

NOTE – If the service element also provides sequential behavior towards the application,
it must pass the event monitor and the timer handler supplied by the application
to the proxy.

3.3.8.2.3 An implementation may provide more than one of the specified behaviors on
either interface. If that option is selected, the implementation shall specify the means by
which the desired behavior can be selected.

NOTE – An implementation may support selection of the behavior by off-line
configuration, or may support dynamic selection by call of a specific start
function.

3.3.9 CONFIGURATION

3.3.9.1 The service element can be configured for a specific deployment environment by
definition of parameters in a configuration database.

3.3.9.1.1 The detailed content, the structure, and the format of the configuration database
shall be implementation specific and documented for an implementation together with the
procedures for entry and update of configuration parameters.

NOTE – This specification does not prescribe how the database is created or how it is
accessed. The configuration database may consist of a simple file or a set of
files, or it may be distributed to one or more directory systems or management
information databases.

3.3.9.1.2 Modification of the configuration database shall be considered a maintenance
activity. The procedures for entry and update of configuration parameters may require that
the service element is terminated and restarted for the modifications to become effective.

3.3.9.1.3 The service element shall specify a configuration file, which provides all
information required by the proxy to access the configuration database. The full path name
of this file shall be passed to the Configure() method of the administrative interface.

NOTE – The configuration file might contain all configuration parameters or might
contain references to other files or information that enables the service element to
query some database for the configuration parameters.

3.3.9.2 The information in the configuration database of the service element shall include,
but not be limited to:

a) the mapping of port identifiers to protocol identifiers for selection of the proxy
instance, as defined in 3.3.4.1.1.3; and

CCSDS 914.0-M-1 Page 3-47 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) the minimum and the maximum value for the reporting cycle to be supported for
periodic status reports for a service element supporting the provider role.

3.3.10 INITIALIZATION, START-UP, TERMINATION, AND SHUTDOWN

3.3.10.1 The service element must be initialized by a call to the method Configure() of
the interface ISLE_SEAdmin, passing it the name of the configuration file and the
interfaces of other components needed.

NOTE – The interfaces needed by the service element and the exact signature are defined
in annex A.

3.3.10.1.1 When the method Configure() is called, the service element shall check the
configuration on completeness and consistency. If any of the checks fail, the service element
shall generate appropriate error messages to the log and return a result code indicating a
configuration error.

3.3.10.1.2 If the configuration database is complete and consistent, the service element shall
perform all actions required to configure the component. If there are any errors, the service
element shall log errors indicating the reason and return an error code to the client.

3.3.10.1.3 Only when all initialization procedures have been completed successfully it shall
return a positive result code.

3.3.10.2 Following configuration, all proxy instances needed must be registered with the
service element, using the method AddProxy() of the interface ISLE_SEAdmin.

3.3.10.2.1 The service element shall check whether the proxy registration is compatible with
its configuration database, its capabilities, and previous registrations. If there are any
problems, it shall log an error and reject the registration with an appropriate error code.

3.3.10.2.2 The checks performed by the service element shall include, but not be limited to
the following:

a) The protocol identifier passed with the registration request must be defined in the
configuration database if the proxy supports associations in the initiator role for the
given deployment environment.

NOTE – The argument role of the method AddProxy() shall indicate the bind
roles which associations of the proxy support for the given installation. If a
proxy implementation can support the initiator role but this role is not needed
by the application, this argument should be set to ‘provider only’.

b) The number of proxies registered must be within the limits supported by the service
element.

CCSDS 914.0-M-1 Page 3-48 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

c) Duplicate registration of the same proxy or the same protocol identifier must be
prevented.

NOTE – Remaining checks must be performed when the service element is started.
For instance, the service element must ensure that all protocol identifiers used
in its mapping table are actually supported by a proxy that has been
registered.

3.3.10.2.3 Registration of proxies must be performed after configuration and before
operation of the service element is started. Invocation of the function at other times results in
an error.

3.3.10.3 Operation of the service element shall be started by a call to the start method
associated with the behavior selected according to 3.3.8.2.1.

NOTE – The start method is defined by the control interface associated with the selected
behavior. Control interfaces are specified in annex A.

3.3.10.3.1 The service element shall only start operation when the initialization has been
completed with success. Otherwise, the start function shall return an error.

3.3.10.3.2 As part of the start method, the service element shall start operation of all proxies
that have been registered. If starting of any of the proxies fails, it shall log an error.

3.3.10.3.3 If starting of at least one of the proxies succeeds, the service element shall start
operation. If starting of at least one of the proxies failed, the service element shall return a
result indicating ‘degraded mode’. Otherwise, the function shall return with success.

NOTE – Start of a proxy may fail because of problems with one or more interfaces. In
such a case, communication with a subset of the peer-systems might still be
possible.

3.3.10.4 Operation of the service element shall be terminated by a call to the terminate
method associated with the behavior selected according to 3.3.8.2.1. When this method is
called, the service element shall stop processing and revert to the state it had after
configuration and before the start method was called.

NOTE – The terminate method is defined by the control interface associated with the
selected behavior. Control interfaces are specified in annex A.

3.3.10.4.1 If service instances are still active and not in the state ‘unbound’, the service
element shall abort the associations and release the service instance objects.

3.3.10.4.2 The service element shall invoke the terminate method on all proxies which it has
started.

3.3.10.4.3 The service element shall release all resources it has allocated after the call to the
start method.

CCSDS 914.0-M-1 Page 3-49 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.10.5 The service element shall be instructed to shutdown by a call to the method
ShutDown() in its administrative interface.

3.3.10.5.1 The service element shall reject the request when it is still operating.

NOTE – In this case, the client shall be required to invoke the ‘terminate function’ first.

3.3.10.5.2 The service element shall release all interfaces of other components on which it
still holds references, delete all internal objects, and release any other resources it may have
allocated.

3.3.10.5.3 The service element shall ensure that all objects of the component are deleted
when clients holding a reference on interfaces have released these references.

3.3.10.5.4 When the method returns with success, the service element has ceased to exist.

3.3.11 COMPONENT OBJECTS AND INTERFACES

3.3.11.1 The component API Service Element shall implement the following component
objects and interfaces:

NOTE – Component objects are defined in annex D of this specification. As explained
there, a component object is an externally visible entity that may be implemented
by a single object or by several internal objects, which co-operate to provide the
required external view. As specified in annex D, every component object shall
support the interface IUnknown in addition to the interfaces listed in this
subsection. The interfaces referenced in the following are specified in annex A
and in the supplemental Recommended Practice documents for service-specific
APIs.

a) a single instance of the API Service Element, which shall export the following
interfaces and support navigation between these interfaces via the method
QueryInterface():

1) the interface ISLE_SEAdmin;

2) the interface ISLE_Locator;

3) the interface ISLE_SIFactory;

4) the interface ISLE_Sequential if the service element supports ‘sequential
interface behavior’ as specified in 3.7.2;

5) the interface ISLE_Concurrent if the service element supports ‘concurrent
interface behavior’ as specified in 3.7.2; and

6) the interface ISLE_TraceControl if the service element supports diagnostic
traces as specified in 3.3.7;

CCSDS 914.0-M-1 Page 3-50 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) service instance objects, which export the following interfaces and support navigation
between these interfaces via the method QueryInterface():

NOTE – A separate object shall be provided for every service instance created by the
application.

1) the interface ISLE_SIAdmin;

2) the interface I<SRV>_SIAdmin for service instances in the provider role, if this
interface is specified for the SLE service type supported by the service instance;

NOTE – The prefix I<SRV> is substituted by the abbreviation for the service type,
e.g., ‘IRAF’. The supplemental Recommended Practice for the service-
specific API defines the interface, if it is needed.

3) the interface I<SRV>_SIUpdate for service instances in the provider role, if
this interface is specified for the SLE service type supported by the service
instance;

NOTE – The prefix I<SRV> is substituted by the abbreviation for the service type,
e.g., ‘IFSP’. The supplemental Recommended Practice for the service-
specific API defines the interface, if it is needed.

4) the interface ISLE_SIOpFactory;

5) the interface ISLE_TraceControl, if the service element supports diagnostic traces
as specified in 3.3.7; and

6) the interface ISLE_ServiceInitiate;

c) one or more objects for processing of external events, which shall export the interface
ISLE_EventProcessor if the service element supports ‘sequential interface
behavior’;

d) one or more objects for processing of a timeout, which shall export the interface
ISLE_TimeoutProcessor if the service element supports ‘sequential interface
behavior’.

NOTE – If the service element supports the interface behavior ‘sequential’ on the
interface to the proxy and the interface behavior ‘concurrent’ on the interface
to the application, it shall also implement and export the interfaces
ISLE_EventMonitor and ISLE_TimerHandler.

3.3.11.2 For the interface ISLE_SrvProxyInform, the service element shall implement
one of the following options:

a) the interface ISLE_SrvProxyInform shall be exported by the same object
exporting the interfaces listed in 3.3.11.1 item b); or

CCSDS 914.0-M-1 Page 3-51 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) the interface ISLE_SrvProxyInform shall be implemented by a separate
component object, which shall also implement a separate interface IUnknown.

NOTE – Clients of the component do not need to navigate between the interfaces
listed in 3.3.11.1 item b) and the interface ISLE_SrvProxyInform.
Therefore, an implementation may opt to support the interfaces to the proxy
and to the application by different objects.

3.4 SLE OPERATIONS

3.4.1 OPERATION OBJECTS

3.4.1.1 The component ‘SLE Operations’ shall implement one operation object class for
every SLE operation defined for the service types it supports. Common operations shall be
provided by all implementations.

NOTE – Common operations are defined in this subsection. Service-type specific
operations are defined in the relevant supplemental Recommended Practice for
the service-specific API.

3.4.1.2 Operation objects shall store the parameters defined for the SLE operation, and
provide read and write access to these parameters. For confirmed operations, operation
objects shall contain the invocation parameters and the return parameters.

3.4.1.3 A reference to the interface ISLE_Reporter may be optionally passed as an
argument to the creator function. This interface can be used by implementations to report
errors and inconsistencies detected in the attributes of operation objects.

3.4.1.4 The component shall provide an ‘operation factory’, which shall create operation
objects in response to requests received via the interface ISLE_OperationFactory.

3.4.1.4.1 A reference to the operation factory shall be returned by the creator function for
the component.

3.4.1.4.2 The operation object to be created shall be specified by an identifier for the
operation object interface, the operation type, the service type and the version number of the
service. When the component does not support objects with the specified interface, the
service type, or version number, or when the operation is not defined for the service type and
version the factory shall reject the request.

3.4.1.4.3 Following creation, the parameters held by an operation object shall be set to the
initial values defined in annex A for common operations and in the relevant supplemental
Recommended Practice for the service-specific API for service-type specific operations.

NOTE – Deletion of operation objects shall be achieved by the reference counting scheme
defined in annex D.

CCSDS 914.0-M-1 Page 3-52 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.4.1.4.4 Unless specified differently in annex A, data passed to operation objects shall be
considered the property of the operation object and be deleted when the object itself is
deleted.

3.4.2 CHARACTERISTICS OF OPERATION OBJECTS

3.4.2.1 Common characteristics of operation objects shall be defined by the interface
ISLE_Operation, which shall be inherited by all interfaces exported by operation objects.

NOTE – This subsection specifies essential characteristics but does not address every
method of the interface. Annex A defines the methods.

3.4.2.1.1 An operation object shall be identified by the combination of an identifier for the
operation, an identifier for the service type and the version number of the service type.
Operation objects shall provide methods to query these identifiers.

3.4.2.1.2 Operation objects shall provide methods to verify that the invocation arguments
are complete, consistent and in range.

NOTES

1 The checks are specified in annex A for common operations and in the relevant
supplemental Recommended Practice for the service-specific API for service-type
specific operations. These checks assume that the operation object has been passed
from the proxy or is about to be passed to the proxy. Therefore, the checks do not
include parameters handled by the proxy.

2 Implementations may issue log messages to report errors detected by these methods
using the interface ISLE_Reporter passed to the creator function of the
component.

3.4.2.1.3 All operation objects shall store the parameter for the invoker credentials.

3.4.2.1.4 Operation objects shall provide a method to produce a human readable string
including the names and values of all parameters set in the object. For binary data, the
method shall produce a dump of hexadecimal digits, where the maximum length of the dump
is constrained by an argument to the method.

NOTE – This specification does not prescribe the format of the printout nor the names of
the parameters. When defining the output it should be considered that it will be
included into diagnostic traces and must be interpreted by humans. The output
should be understandable to engineers that are not programmers.

3.4.2.1.5 In order to increase performance, the interfaces provided by operation objects are
not safe in a multi-threaded environment. However, operation objects shall support an
advisory lock that can be set on the object. This lock must be used by clients in a multi-
threaded environment. The implementation shall prevent self-inflicting deadlocks.

CCSDS 914.0-M-1 Page 3-53 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.4.3 CHARACTERISTICS OF CONFIRMED OPERATION OBJECTS

3.4.3.1 Common characteristics of objects implementing confirmed operations shall be
defined by the interface ISLE_ConfirmedOperation, which is inherited by all
interfaces exported by confirmed operation objects.

NOTE – This subsection specifies essential characteristics but does not address every
method of the interface. Annex A defines the methods.

3.4.3.1.1 Confirmed operations shall store the invocation identifier used in the invocation
PDU and in the return PDU.

3.4.3.1.2 Confirmed operations shall store the result of the operation and, if the result is set
to ‘negative’, the associated diagnostics.

3.4.3.1.3 Confirmed operation objects shall store the parameter for the performer
credentials.

3.4.3.1.4 Confirmed operation objects shall provide methods to verify that the return
arguments are complete, consistent, and in range.

NOTE – The checks are specified in annex A for common operations and in the relevant
supplemental Recommended Practice for the service-specific API for service-type
specific operations. These checks assume that the operation object has been
passed from the proxy or is about to be passed to the proxy. Therefore, the
checks do not include parameters handled by the proxy.

3.4.4 COMMON OPERATION OBJECT CLASSES

3.4.4.1 Operations for Common Association Management

3.4.4.1.1 All implementations shall provide operation objects for the following SLE
operations:

a) the operation BIND;

b) the operation UNBIND; and

c) the operation PEER-ABORT.

3.4.4.1.2 The operations for association management shall be included in the set of service-
type specific operations provided for a given service type. The implementation shall ensure
that the service type information returned by these objects matches the service type for which
it has been created.

NOTE – This specification implies, for instance, that a BIND operation object that has
been created for the FSP service always returns the service type identification
‘FSP’.

CCSDS 914.0-M-1 Page 3-54 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.4.4.2 Other Common Operations

3.4.4.2.1 All implementations shall provide objects for the following SLE operations,
which are used for more than one SLE service type:

a) the STOP operation;

b) the SCHEDULE-STATUS-REPORT operation; and

c) the pseudo-operation TRANSFER-BUFFER.

NOTE – TRANSFER-BUFFER is actually not defined as an SLE operation by the
CCSDS Recommended Standards for return link services (references [4] and [5]
and [6]). Within the API, the operation object shall implement the transfer buffer
used for return link services. It shall correspond to the PDU used for
transmission of the transfer buffer.

3.4.4.2.2 These operations shall be included into the set of service-type specific operations
provided for a given service type. The implementation shall ensure that the service type
information returned by these objects matches the service type for which it has been created.

NOTE – This specification implies, for instance, that a STOP operation object that has been
created for the FSP service always returns the service type identification ‘FSP’.

3.4.4.2.3 The operation object for the pseudo-operation TRANSFER-BUFFER shall
provide a facility to queue and to de-queue any type of operation objects. The object shall
not check what operation objects are inserted into the buffer.

NOTE – It is considered the responsibility of the client to insert only those objects for which
buffering has been defined in the CCSDS Recommended Standards for return link
services (references [4] and [5] and [6]). This implies that a client extracting
objects from the buffer must verify that the type of the object is correct. Details on
the features provided for queue handling are defined by the interface in annex A.

3.4.5 COMPONENT OBJECTS AND INTERFACES

3.4.5.1 The component SLE Operations shall implement the following component objects
and interfaces:

NOTE – Component objects are defined in annex D of this specification. As explained
there, a component object is an externally visible entity that may be implemented
by a single object or by several internal objects, which co-operate to provide the
required external view. As specified in annex D, every component object shall
support the interface IUnknown in addition to the interfaces listed in this
subsection. The interfaces referenced in the following are specified in annex A.

a) an object for the operation object factory exporting the interface
ISLE_OperationFactory; and

CCSDS 914.0-M-1 Page 3-55 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) operation objects for all operations required by the SLE service types supported.

NOTE – A separate object shall be supported for every operation object created via the
operation factory.

3.4.5.2 Operation objects shall export the following interfaces and provide navigation
between these interfaces via QueryInterface():

a) the interface ISLE_Operation;

b) the interface ISLE_ConfirmedOperation, if the SLE operation supported by
the object is confirmed; and

c) the interface specified for the operation type supported by the object.

3.5 SLE UTILITIES

3.5.1 GENERAL SPECIFICATIONS

3.5.1.1 The component ‘SLE Utilities’ shall implement auxiliary objects that must be
passed across component boundaries. The object classes provided are:

a) a memory management class handling allocation and release of memory for data
structures passed across component boundaries;

b) a time class handling specific CCSDS time formats;

c) a class handling the service instance identifier defined by the CCSDS Recommended
Standards for SLE transfer services;

d) a class handling the credentials passed with SLE protocol data units for authentication
of the peer identity; and

e) a class storing security attributes of an SLE application and capable of generating
credentials and authenticating credentials.

NOTES

1 The API requires a common implementation for objects passed between component
boundaries. Use of component interfaces for such objects instead of a standard class
library minimizes the dependencies between the API components.

2 The functionality and the interfaces defined for SLE Utilities are minimal and
restricted to what is needed for the SLE API.

3.5.1.2 The component shall provide a ‘utility factory’, which shall create utility objects in
response to requests received via the interface ISLE_UtilFactory.

CCSDS 914.0-M-1 Page 3-56 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – Deletion of utility objects is achieved by the reference counting scheme defined
in annex D.

3.5.1.3 A reference to the utility factory shall be returned by the creator function for the
component.

3.5.1.4 An interface providing an external time source may be passed to the component as
an argument to the creator function. If this option is used, the component shall use the
external time source interface to obtain current time. Otherwise, it shall use system time.

NOTES

1 The external time source is provided via the interface ISLE_TimeSource defined
in 3.6.4 and in annex A.

2 The current time obtained via the external time source or from system time is
supplied to other API components via the Time class specified in 3.5.2.

3.5.1.5 In order to increase performance, the interfaces provided by utility objects are not
safe in a multi-threaded environment, except for the memory management interface
IMalloc.

NOTE – In general, utility objects shall either be stored locally or need to be accessed only
in combination with the operation object passing the value. Therefore, access by
a single thread of control can generally be guaranteed by the processing context.
Should special protection be required, this must be implemented by the clients of
the object.

3.5.2 MEMORY MANAGEMENT

NOTE – An SLE API specific memory management service is required to avoid
inconsistencies between memory management services used by different
independently developed components. The interface provided conforms to the COM
memory manager specified in reference [J5] in order to allow use of the SLE API in
a COM environment. However, implementations are not required to provide a COM
conforming implementation and clients should only rely on the methods specified in
this subsection. For further information see annex A and annex D.

3.5.2.1 The services of the memory manager shall be made available by the interface
IMalloc. The features provided shall include:

a) allocation of a block of memory;

b) release of a previously allocated block of memory; and

c) re-allocation of a block of memory using a new block size, the contents of the block
are unchanged up to the shorter of the new and old sizes.

CCSDS 914.0-M-1 Page 3-57 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.5.2.2 Implementations may provide dummy implementations for the following methods
defined by the interface IMalloc:

a) GetSize() always returning zero;

b) DidAlloc() always returning –1;

c) HeapMinimize().

3.5.2.3 The component SLE Utilities shall make sure that all memory allocated and
released via the interface IMalloc is subject to a consistent memory management scheme.

NOTE – Provided that this requirement is met, implementations may use multiple objects
or a single object to implement the interface IMalloc.

3.5.2.4 The implementation of the interface IMalloc shall be multi-thread safe.

3.5.2.5 API components and SLE Applications using the API shall be required to use the
memory manager for allocation and release of all data structures passed between API
components and between API component and the SLE application.

NOTE – This requirement does not apply to utility objects and operation objects, as
memory management for these is achieved by reference counting as specified in
annex D.

3.5.3 TIME

NOTE – CCSDS SLE Recommended Standards require that all time parameters be in UTC.
However, the time class is not required to perform conversion between local time
and UTC. It is assumed that the systems providing or using SLE Services will use
UTC as their system time or supply UTC time via the interface
ISLE_TimeSource, if that interface is used. (For possible exceptions see
3.6.4.)

3.5.3.1 The services of the time class shall be made available by the interface
ISLE_Time. The features provided shall include:

a) setting the time from the following inputs:

1) the CCSDS day segmented time code (CDS) specified in reference [1] with the
following selection of options:

i) level 1 epoch, i.e., 01.01.1958;

ii) 16-bit day field;

iii) resolution in microseconds;

iv) the P-Field is implicit and not part of the input or output data;

CCSDS 914.0-M-1 Page 3-58 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2) the CCSDS ASCII Calendar Segmented Time Code specified in reference [1]
with two variants A (Month/Day of Month) and B (Year/Day of Year), supporting
the following subsets:

i) the calendar subset;

ii) the time subset to the resolution defined by the client;

b) output of the stored time in the formats defined by item a);

c) resetting the time to current time;

d) comparison of two time objects;

e) calculation of the difference between two time objects and output of the result in
seconds and fractions of seconds.

3.5.3.2 After creation of an object, the time value shall be set to current time.

3.5.3.3 The time class shall support time values up to an accuracy of one microsecond.

NOTE – This requirement is to be understood such that the object shall maintain the
accuracy of a time value passed to it. The accuracy of the time value when the
current time is set depends on the capability of the platform.

3.5.4 SERVICE INSTANCE IDENTIFIER

NOTES

1 The service instance identifier is specified in the CCSDS Recommended Standards
for SLE transfer services as a Distinguished Name as defined by reference [17]. In
addition, the CCSDS Recommended Standards define a human readable string
format. This class supports both formats and is able to convert between them.

2 This class is not required to provide a general implementation for distinguished
names. In particular, the implementation may take advantage of the following:

– the attribute value is always an ASCII string;

– the values of the object identifiers used to identify the attributes have a fixed size
and differ only in the last component.

3 [V1:] For version 1 of the SLE transfer services RAF, RCF, and CLTU, the
specification of the Service Instance Identifier is provided in annex C of this
Specification. By default the class shall support the service instance identifier format
defined by the CCSDS Recommended Standards for transfer services. Support of the
initial format defined by annex C is optional and must be requested by calling the
appropriate method. Implementations not supporting the initial format shall return an
error when this method is called.

CCSDS 914.0-M-1 Page 3-59 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.5.4.1 The services of the service instance identifier class shall be made available by the
interface ISLE_SII. The features provided shall include:

a) setting of the service instance identifier value from the following inputs:

1) a sequence of relative distinguished names where the attribute is identified by an
object identifier presented as a sequence of integers and the attribute value as an
ASCII string;

2) [V1:] for version 1 of the RAF, RCF or CLTU service, the standard ASCII
representation of the service instance identifier as defined in annex C; or

3) [V2:] the standard ASCII representation of the service instance identifier as
defined in the CCSDS Recommended Standards for SLE transfer services;

b) output of the service instance identifier in the formats defined in item a);

c) testing two service identifier objects for equality;

d) [V1:] for version 1 of the RAF, RCF or CLTU service, verification that the attributes
used in the service instance identifier are those defined by annex C;

NOTE – For version 1 of the services RAF, RCF, and CLTU, the class shall not check
the number, sequence, or selection of attributes. Also it shall not check any
of the attribute values.

e) [V2:] verification that the format conforms to the specification provided in the
CCSDS Recommended Standards for SLE transfer services.

NOTE – The attributes used in the identifier and the sequence of the attributes must
conform to the specification and all required attributes must be present. In
addition, the CCSDS Recommended Standards define a permissible set of
values for some of the attributes, which must be adhered to.

3.5.4.1.1 The class shall process input and output as follows:

a) When processing input of a value presented in ASCII, the class shall check the syntax
and perform the checks specified in 3.5.4.1. If there is an error, it shall reset the
internal value to NULL and return an error.

b) In the ASCII representation produced as output, a NULL value of the service instance
identifier shall be represented by a string of three asterisks (‘***’). This value shall
not be accepted for input.

3.5.4.2 After creation, the value of the service instance identifier shall be NULL; i.e., the
distinguished name shall not contain any components.

CCSDS 914.0-M-1 Page 3-60 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.5.5 CREDENTIALS

3.5.5.1 Objects of the credentials class shall store the following attributes, as defined by
reference [18] for the simple authentication scheme:

a) the time when the credentials have been created;

b) a random number;

c) a message digest produced according to the procedure defined in 3.5.6.4.

3.5.5.2 The credentials class shall provide read and write access to its attributes by the
interface ISLE_Credentials.

3.5.6 SECURITY ATTRIBUTES

3.5.6.1 Objects of the class handling security attributes shall store the following attributes:

a) User name. The following rules shall apply for this attribute:

1) the user name is a character string of 3 to 16 characters; and

2) the user name must be identical to the authority identifier of the application by
which the application is identified in the BIND invocation and the BIND return.

b) Password. The following rules shall apply for this attribute:

1) the password is an octet string of 6 to 16 octets; and

2) SLE API components make no assumptions on the contents of the octets and use
the octet string as supplied.

3.5.6.2 Objects handling security attributes shall not check the length of the user name and
the password but rely on the client supplying the attributes to pass strings of the correct
length.

NOTE – It is expected that the components API Proxy and API Service Element check the
length of the user name and password when reading the configuration database.

3.5.6.3 The services of the class shall be made available by the interface
ISLE_SecAttributes. The features provided shall include:

a) write access to the attributes stored by the object;

NOTE – Because objects hold sensitive information, the interface shall not support
read access.

b) test of two objects of the class for equality;

c) generation of credentials from the security attributes stored; and

CCSDS 914.0-M-1 Page 3-61 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

d) authentication of credentials using the security attributes stored.

3.5.6.4 Generation of credentials shall be performed according to the protected simple
authentication procedure (Protected 1) defined in reference [18] and detailed by the following
specifications.

3.5.6.4.1 The following information shall be encoded using the ASN.1 syntax defined in
reference [15] and the Distinguished Encoding Rules (DER) specified in reference [16]:

NOTE – Encoding the information with DER provides a platform independent bit pattern
from which a hash code can be generated. Use of ASN.1 and DER for generation
of credentials does not imply that ASN.1 or DER is used for encoding of data
exchanged between the service user and the service provider. Given the
simplicity of the ASN.1 type, encoding can be easily handcrafted and use of an
ASN.1 compiler is not required.

a) the current time, using the CCSDS day segmented time code without the P-field;

b) a random number generated by the class;

c) the user name stored in the object; and

d) the password stored in the object.

3.5.6.4.2 The ASN.1 type used for encoding shall be defined as
HashInput ::= SEQUENCE
{ time OCTET STRING (SIZE(8))
, randomNumber INTEGER (0 .. 2147483647)
, userName VisibleString
, passWord OCTET STRING
}

3.5.6.4.3 The output of the encoder shall be passed through a one-way hash function to
obtain a message digest.

3.5.6.4.4 A new credentials object shall be created and user name, the random number, the
time, and the message digest shall be passed to that object.

3.5.6.5 Authentication of credentials shall be performed according to the protected simple
authentication procedure (Protected 1) defined in reference [18] and detailed by the following
specifications.

3.5.6.5.1 The time in the credentials shall be checked against the current time. If the time
difference is larger than the acceptable delay passed as an argument, authentication shall fail.

3.5.6.5.2 The following information shall be encoded using the ASN.1 type defined in Error!
Reference source not found. and the Distinguished Encoding Rules:

a) the time obtained from the credentials, in the CCSDS format;

CCSDS 914.0-M-1 Page 3-62 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) the random number obtained from the credentials;

c) the user name stored in the object; and

d) the password stored in the object.

3.5.6.5.3 The string shall be passed through a one-way hash function to obtain a message
digest.

3.5.6.5.4 The message digest shall be compared with the message digest in the credentials. If
these match, authentication shall be regarded as successful. Otherwise, authentication shall
fail.

3.5.6.6 The one-way hash function used is SHA-1 defined by reference [21].

3.5.7 COMPONENT OBJECTS AND INTERFACES

The component SLE Utilities shall implement the following component objects and
interfaces:

NOTE – Component objects are defined in annex D of this specification. As explained
there, a component object is an externally visible entity that may be implemented
by a single object or by several internal objects, which co-operate to provide the
required external view. As specified in annex D, every component object shall
support the interface IUnknown in addition to the interfaces listed in this
subsection. The interfaces referenced in the following are specified in annex A.

a) an object for the utility factory exporting the interface ISLE_UtilFactory;

b) objects for the time utility exporting the interface ISLE_Time;

c) objects for the service instance identifier exporting the interface ISLE_SII;

d) objects for the credentials exporting the interface ISLE_Credentials; and

e) objects for the security attributes exporting the interface ISLE_SecAttributes.

NOTE – Separate utility objects shall be supported for every object created via a call to
the utility factory.

3.6 SLE APPLICATION

3.6.1 OBLIGATIONS

NOTE – An application using the SLE API must implement a set of interfaces defined by
the API and perform specific tasks required for correct functioning of the API.
This subsection summarizes the obligations of the application.

CCSDS 914.0-M-1 Page 3-63 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.6.1.1 The application shall create all API components and configure them, see 3.6.5.

3.6.1.2 The application shall control processing of the service element and participate in
service instance management, see 3.6.6.

3.6.1.3 The application shall implement and export the interface ISLE_ServiceInform
used by the service element for passing of SLE protocol data units received from the peer
SLE application for one service instance.

3.6.1.4 The application shall implement and export an interface by which API components
can enter records to the system log and notify the application of specific events, see 3.6.2.

3.6.1.5 The application shall implement and export an interface by which API components
can enter event trace records for diagnostic purposes. The application shall also start and stop
tracing using the interface ISLE_TraceControl exported by the components. See 3.6.3.

3.6.1.6 The application may implement and export an interface by which the API
component ‘SLE Utilities’ can obtain current time, see 3.6.4.

NOTE – An application using this feature may provide simulated time to the API.

3.6.1.7 The application shall participate in memory management by applying the reference
counting scheme for component interfaces specified in annex D to this specification and
using the API memory manager via the interface IMalloc.

NOTE – API memory management is specified in 3.5.2.

3.6.1.8 The application shall terminate processing of the API and control orderly shutdown
of the API, see 3.6.5.

3.6.2 LOGGING AND NOTIFICATION

NOTES

1 The specifications in this subsection partially apply to clients of the interface
ISLE_Reporter.

2 API components shall apply the following guidelines for production of log records
and notifications. Errors detected by a component shall always be logged, providing
as much information as possible to support investigation of the problem. Errors
reported by a lower layer component shall not be logged unless important information
can be added. Nominal events shall only be logged when the higher layer component
or the application is not informed of the event by other means.

3 Notifications shall be constrained to events related to security, failure of the
communication system, and to events that cannot be detected by the application by

CCSDS 914.0-M-1 Page 3-64 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

other means. The event shall be notified by the highest layer in the API that can
detect the event.

3.6.2.1 The SLE Application shall export the interface ISLE_Reporter by which API
Proxy and the API Service Element can enter log records and notify the application of
specific alarms.

NOTE – An application interface conforming to this specification must provide the
interface ISLE_Reporter. However, this specification does not prescribe
how the application handles the information passed to the interface.

3.6.2.2 The implementation of the interface ISLE_Reporter shall be multi-thread safe.

3.6.2.3 Log records shall be classified as ‘alarms’ or ‘information messages’.

3.6.2.3.1 Alarms shall be raised for non-nominal events, including but not limited to:

a) security alarms (access violations and authentication failures);

b) communication system failures;

c) incorrect specification of operation parameters;

d) protocol errors;

e) configuration deficiencies; and

f) errors that might be caused by a malfunctioning component.

3.6.2.3.2 Information messages shall report nominal events for documentation purposes.

3.6.2.4 A log record shall be an ASCII string without any formatting characters.

NOTE – This specification does not define a maximum length for the string.
Implementers should consider that most applications impose constraints on the
length of log records and might have to truncate long strings. Therefore, the
message should be kept as short as possible.

3.6.2.5 For every log record the following additional information shall be supplied, using
the arguments of the method LogRecord():

a) the identification of the component that produced the log record;

b) the service instance identifier, if applicable;

c) the classification of the log record as defined in 3.6.2.3; and

d) a unique identification number, which is referenced in the documentation supplied by
the implementation of the API component.

CCSDS 914.0-M-1 Page 3-65 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – The time of the event is not passed as an argument. It is expected that the time be
added by the method LogRecord().

3.6.2.6 The application shall be notified of the following types of events using the function
Notify():

a) access violation alarms;

b) authentication failures;

c) communication system failures;

d) premature termination of an association by a component before the higher layer
becomes aware of association establishment; and

e) premature termination of an association by the peer system before the higher layer
becomes aware of association establishment.

3.6.2.7 The following information shall be supplied with a notification, using the
arguments of the method Notify():

a) the type of the notification as defined in 3.6.2.6;

b) the identification of the component that issued the notification;

c) the service instance identifier, if applicable;

d) a unique identification number, which is referenced in the documentation supplied by
the implementation of the API component; and

e) optionally an additional text with a maximum length of 20 characters.

NOTE – The time of the event shall not be passed as an argument. It is expected that the
time be added by the method Notify().

3.6.3 DIAGNOSTIC TRACES

NOTES

1 The following specifications partially apply to clients of the interface ISLE_Trace.

2 This specification does not prescribe how an application deals with the trace records
passed to the interface ISLE_Trace.

3 This specification does not prescribe how a trace record is formatted. When defining
the layout, it should be considered that traces are generally used for printout and must
be readable for humans. The output should be understandable to engineers that are
not programmers.

CCSDS 914.0-M-1 Page 3-66 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.6.3.1 Components supporting traces of events shall generate trace records that are passed
to the interface ISLE_Trace, provided by the SLE Application.

NOTE – Components supporting traces shall implement the interface
ISLE_TraceControl. If a component does not support tracing, a query for
that interface shall be rejected.

3.6.3.1.1 The implementation of the interface ISLE_Trace shall be multi-thread safe.

3.6.3.1.2 The events for which for which trace records are generated and the amount of
information that is entered in trace records shall be controlled by a trace level argument to the
method StartTrace() in the interface ISLE_TraceControl. The trace levels are
defined as follows:

a) ‘Low’ – state changes are traced. The information includes the old state, the new
state, and the event that caused the state change.

b) ‘Medium’ – the trace additionally includes the type of all PDUs processed as well as
additional interactions between components.

NOTE – An example for an additional interaction is the report by the proxy that a PDU
has been transmitted. Further local events may be added by an implementation.

c) ‘High’ – the trace additionally contains a printout of all parameters of the PDU
processed. The maximum length for the printout of one argument is constrained by
the associated argument of the method StartTrace().

d) ‘Full’ – the trace additionally contains a dump of the encoded data sent to and
received from the network.

3.6.3.1.3 For every trace record the following additional information shall be supplied,
using the arguments of the method TraceRecord() defined in ISLE_Trace:

a) the identification of the component that produced the trace record; and

b) the service instance identifier, if applicable.

NOTE – The time of the event is not required as it can be added by the method
TraceRecord().

CCSDS 914.0-M-1 Page 3-67 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.6.4 TIME SOURCE

NOTES

1 Applications may require that API components use a time source supplied by the
application. Such a feature might be needed if the application uses an external time
source, which is not necessarily synchronized with system time. It might also be used
within simulation campaigns where a simulation might have to run in ‘future time’
without changing system time.

2 The Time Source interface specified in this subsection is used by the API component
‘SLE Utilities’ to set current time in the interface ISLE_Time. As API components
are required to use that interface for handling of time, the time reference is distributed
to all other API components. If the application opts not to use this feature, the
component ‘SLE Utilities’ uses system time.

3.6.4.1 Applications wishing to provide a time source to the API shall export the interface
ISLE_TimeSource and pass this interface to the creator function of the API component
‘SLE Utilities’.

3.6.4.2 The interface ISLE_TimeSource shall provide a method returning the current
time in CCSDS CDS format.

3.6.4.3 The time returned by the interface ISLE_TimeSource may have a positive or
negative offset to the system time. However, API components may rely on the fact that this
offset remains constant within the limits of the accuracy for timers defined in this specification.

NOTES

1 The required timer accuracy is specified in 3.7.2.8.

2 A constant offset from system time allows implementation of timers using standard
services of the operating system.

3.6.5 INITIALIZATION AND SHUTDOWN OF THE API

3.6.5.1 The application shall create the API components needed for the specific installation
using the creator functions provided by the components.

NOTE – The sequence in which the components must be created is partially determined
by information required by the creator function. For instance, the creator
function for operation objects requires a pointer to the utility factory.

3.6.5.2 The application shall configure and link the API components.

3.6.5.2.1 The application shall configure the service element providing it the path name of
the configuration file and the required interface references.

CCSDS 914.0-M-1 Page 3-68 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – Configuration of the service element is specified in 3.3.10.

3.6.5.2.2 The application shall configure all proxy instances with the path name of the
configuration file for each proxy and the required interface references including the reference
to the interface ISLE_Locator obtained from the service element.

NOTE – Configuration of the proxy is specified in 3.2.12.

3.6.5.2.3 The application shall register each of the proxies with the service element.

NOTE – Registration of proxies with the service element is specified in 3.3.10.

3.6.5.3 After configuration of all components, the application shall start processing of the
service element by invocation of the start method of the control interface selected according
to 3.6.6.1.

NOTE – Processing of the proxies shall be started by the service element.

3.6.5.4 For closedown of the API, the application shall perform the following steps in the
sequence specified.

3.6.5.4.1 The application shall call the terminate method of the selected control interface on
the service element.

NOTE – Processing of the proxies shall be stopped by the service element.

3.6.5.4.2 The application shall release all API interfaces on which it holds references.

3.6.5.4.3 The application shall call the method ShutDown() of the administrative
interfaces of the service element and of all proxies.

3.6.6 CONTROL OF THE SERVICE ELEMENT

3.6.6.1 For the interaction with the service element, the application shall provide one of the
behaviors defined in 3.7 and control the service element using the interface associated with
that behavior.

3.6.6.1.1 If the application provides the sequential behavior, it shall also provide the event
monitor and the timer handler defined in 3.7.2.

3.6.6.2 The application shall create and delete service instances using the interface
ISLE_SIFactory provided by the service element.

3.6.6.3 The application shall configure service instances providing the common service
parameters defined in this specification and the service-type specific parameters defined in
the relevant supplemental Recommended Practice for the service-specific API.

CCSDS 914.0-M-1 Page 3-69 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.6.6.4 A service provider application shall update service instances with values of
parameters that are modified by the service production process.

3.6.7 COMPONENT OBJECTS AND INTERFACES

3.6.7.1 An SLE Application shall implement the following component objects and interfaces:

NOTE – Component objects are defined in annex D of this specification. As explained
there, a component object is an externally visible entity that may be implemented
by a single object or by several internal objects, which co-operate to provide the
required external view. As specified in annex D, every component object shall
support the interface IUnknown in addition to the interfaces listed in this
subsection. The interfaces referenced in the following are specified in annex A.

a) objects for use by service instances exporting the interface
ISLE_ServiceInform;

NOTE – A separate component object shall be provided for every service instance
created by the application.

b) one or more objects accepting log records and notifications and exporting the
interface ISLE_Reporter;

c) one or more objects exporting the interface ISLE_EventMonitor, if the application
requires the interface behavior ‘sequential’;

d) one or more objects exporting the interface ISLE_TimerHandler if the application
requires the interface behavior ‘sequential’.

3.7 HANDLING OF IN PROCESS THREADS AND EXTERNAL EVENTS

3.7.1 GENERAL SPECIFICATIONS

NOTES

1 In order to ensure substitutability, handling of threads (or other implementations of
concurrent flows of control) must be well defined at interfaces between components.
This specification defines a single threaded (sequential) and a multi-threaded
(concurrent) option. For the single threaded option, it also defines an interface by
which the client offers means for components to wait for external events. For the
multi-threaded option, components are expected to handle external events internally.
Components are required to support one of these options but may support both. The
terminology and the concepts are explained in 3.3.4.

2 The specifications in this subsection apply to active API components, i.e., the API
Service Element and the API Proxy, as well as to the interfaces provided by the SLE

CCSDS 914.0-M-1 Page 3-70 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Application. Relevant specifications for the components ‘SLE Operations’ and ‘SLE
Utilities’ are defined in 3.4 and 3.5.

3.7.1.1 API components shall provide one of the following behaviors for interfaces:

a) sequential behavior, in which methods of the interface must be invoked sequentially
by different flows of control;

NOTE – Sequential behavior and the associated control interface are defined in 3.7.2.

b) concurrent behavior in which methods of an interface may be invoked concurrently
by different flows of control.

NOTE – Concurrent behavior and the associated control interface are defined in 3.7.3.

3.7.1.2 A component shall provide the same behavior on all interfaces provided to one
client and expect the same behavior for the complementary interfaces provided by the client.

3.7.1.3 API components shall support a control interface according to the behavior
provided on their interfaces. This control interface shall provide methods to start and
terminate processing of the component.

3.7.2 SEQUENTIAL BEHAVIOR

3.7.2.1 A component providing sequential interface behavior shall be controlled by the
interface ISLE_Sequential exported by the component.

3.7.2.2 Processing of the component shall be started by the method
StartSequential(), which shall pass references to the interfaces
ISLE_EventMonitor and ISLE_TimerHandler as arguments.

NOTE – The event monitor and its use by the component are defined in 3.7.2.7. The timer
handler and its use by the component are specified in 3.7.2.8.

3.7.2.3 The method StartSequential() shall return as soon as processing of the
component has started.

3.7.2.4 The component shall guarantee that calls to complementary interfaces provided by
its client are performed in the thread of control that originates from:

a) a call of the client to one of the interfaces exported by the component;

b) a call to the method ProcessEvent() in the interface ISLE_EventProcessor
passed to the event monitor; or

c) a call to the method ProcessTimeout() in the interface
ISLE_TimeoutProcessor passed to the timer handler.

CCSDS 914.0-M-1 Page 3-71 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – Use of multiple threads within the component is not excluded. However, the
component must ensure that no thread created within the component or in a
component other than the client enters client code.

3.7.2.5 The client shall guarantee that all calls to component interfaces are performed in a
single thread of control at a time.

NOTE – Use of multiple threads by the client is not excluded, but the client must ensure
that calls to the component interfaces are strictly serialized.

3.7.2.6 For interfaces with sequential behavior, sequence counting for transfer of SLE
protocol data units as defined in 3.7.3.5 is not required. The sequence count argument in the
associated methods shall be set to zero.

3.7.2.7 The event monitor shall provide a service to the component to wait for external events.

3.7.2.7.1 An event, which the event monitor should wait for, shall be registered with the
method AddEvent() passing an event handle and a reference to the interface
ISLE_EventProcessor.

NOTE – When events make use of UNIX file descriptors and event types (see annex A)
AddEvent() must be called separately for read events, write events, and
exceptions on a file descriptor, if the event monitor shall report these events.

3.7.2.7.2 An event shall be de-registered with the method RemoveEvent(), which
references the event handle that shall be removed from the list of monitored events.

3.7.2.7.3 The event monitor shall support waiting for several events in parallel. If the event
monitor constrains the number of events that can be registered, it shall return an error code
indicating ‘overflow’ when this number is exceeded.

NOTE – It is noted that an event monitor with too restrictive constraints can prevent
proper operation of the component.

3.7.2.7.4 When the event monitor detects an event, it shall call the method
ProcessEvent() on the interface that has been registered for that event.

3.7.2.7.5 When the event monitor is no longer able to monitor an event for whatever reason,
it shall remove the event and inform the event processor using the method
MonitorAbort().

NOTE – If more than one event must be removed, the method shall be invoked for every
event.

3.7.2.8 The timer handler shall provide a service to the component to have timers started
and be informed when the timer expires.

CCSDS 914.0-M-1 Page 3-72 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.7.2.8.1 A timer shall be started by the method StartTimer() passing the timeout
value and a reference to the interface ISLE_TimeoutProcessor. When the timer has
been started, the method shall provide a timer identifier for later reference.

3.7.2.8.2 The timer handler shall allow specifying the timeout value with a resolution of
one second.

3.7.2.8.3 The timer handler shall support several running timers in parallel. If the timer
handler constrains the number of timers that can be running, it shall return an error code
indicating ‘overflow’ when this number is exceeded.

NOTE – It is noted that timer handler with too restrictive constraints can prevent proper
operation of the component.

3.7.2.8.4 When the timer expires, the timer handler shall call the method
ProcessTimeout() of the interface ISLE_TimeoutProcessor, which has been
registered with the method StartTimer().

3.7.2.8.5 The timer handler shall provide the method CancelTimer() of the interface
ISLE_TimerHandler, with which an active timer can be cancelled.

3.7.2.8.6 The timer handler shall provide the method RestartTimer() of the interface
ISLE_TimerHandler, with which an active timer can be cancelled and restarted with a
new timeout value.

3.7.2.8.7 As an option, the timer handler shall support an invocation identifier to be
associated with the activation of a timer.

3.7.2.8.8 The invocation identifier shall be passed as an optional argument to the method
StartTimer() or RestartTimer() of the interface ISLE_TimerHandler.

3.7.2.8.9 The timer handler shall memorize the identifier and pass it to the call of the
method ProcessTimeout() in the interface ISLE_TimeoutProcessor when the
timer expires.

NOTE – The invocation identifier supports handling of race conditions in a multi-threaded
environment. If a timer is restarted just before it expires, a call to the method
ProcessTimeout() in the interface ISLE_TimeoutProcessor can
actually result from a previous call to StartTimer(). Such race conditions
cannot be avoided, but unwanted calls to ProcessTimeout() can be
identified and ignored, as the causality of the call can be determined using the
invocation identifier.

3.7.2.8.10 When the timer handler is no longer able to process an active timer for whatever
reason, it shall cancel the timer and inform the timeout processor using the method
HandlerAbort().

CCSDS 914.0-M-1 Page 3-73 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE – If more than one timer must be aborted, the method shall be invoked for every timer.

3.7.2.9 Processing of the component shall be terminated by calling the method
TerminateSequential() of the interface ISLE_Sequential. The method shall
ensure that all events registered by the component are removed from the event monitor and
all running timers have been cancelled.

3.7.3 CONCURRENT BEHAVIOR

3.7.3.1 A component providing concurrent interface behavior shall be controlled by the
interface ISLE_Concurrent exported by the component.

3.7.3.2 Processing of the component shall be started by the method
StartConcurrent(), which shall return as soon as processing has started.

3.7.3.3 The component must expect methods in an interface exported to the client to be
called concurrently by separate threads of control.

3.7.3.4 The client of the component must expect methods in an interface passed to the
client to be called concurrently by separate threads of control.

3.7.3.5 In order to support sequence preservation for SLE protocol data units, methods
passing PDUs across an interface with concurrent behavior shall support sequence counting.

NOTES

1 The sequence count refers to the sequence in which PDUs have been received from
the network or have been supplied by the application. It is required in a multi-
threaded environment, because the sequence is not preserved when different PDUs
are processed by different threads. This specification requires components to support
sequence counting also in those cases where the specific implementation would
preserve the sequence of PDUs. This would be the case when a component uses a
single thread for PDUs transferred in one direction.

2 It is stressed that sequence counting is local to a given interface. For the service
element, sequence-counts on the proxy interface can differ from those on the
application interface.

3.7.3.5.1 The sequence count is a 32 bit unsigned integer.

3.7.3.5.2 The sequence count for a BIND invocation or a BIND return transmitted for one
association shall be set to one.

NOTE – This implies that sequence counts shall restart at one when an association has
been terminated or aborted and a new BIND invocation is issued.

3.7.3.5.3 For subsequent PDUs, the sequence-count shall be incremented by one.

CCSDS 914.0-M-1 Page 3-74 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 3-75 October 2008

3.7.3.5.4 Recycling of the sequence count to zero shall be supported.

3.7.3.5.5 The receiving entity shall define a window in which it accepts sequence counts.
When receiving a sequence count outside of this window for a PDU, which is not a
PEER-ABORT invocation, it shall reject the PDU with an error code indicating ‘sequence error’.

NOTE – It is not required but recommended that the window size be configurable.

3.7.3.6 Components providing the concurrent behavior shall handle external events
internally without further support by the client.

3.7.3.7 Processing of the component shall be terminated by the method
TerminateConcurrent() of the interface ISLE_Concurrent. The method shall
ensure that all threads started by the component are stopped such that graceful termination of
the process becomes possible.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4 STATE TABLES

4.1 INTRODUCTION

This section defines detailed state tables for the processing of associations in the API Proxy
and service instances in the API Service Element, which are derived from the state tables in
the CCSDS Recommended Standards for SLE transfer services. The state tables in this
specification differ from those in the CCSDS Recommended Standards for SLE transfer
services in the following aspects:

a) the state tables are applicable to all service types;

b) specific state tables are provided for the API Proxy and the API Service Element; and

c) state tables for the SLE service user are explicitly specified.

The API Proxy and the API Service Element do not implement all aspects defined by the
state tables in the CCSDS Recommended Standards for SLE transfer services. In particular,
detection of and reaction to events in the service production process must be implemented by
the application. The behavior defined by the state tables in the CCSDS Recommended
Standards for SLE transfer services is achieved by interaction of the state machines in the
API Proxy, the API Service Element, and the SLE Application.

4.2 NOTATION

The notation used for the state tables is the one specified by UML for state diagrams (see
reference [J6]). This notation has been slightly extended to adapt it to state tables. It is
summarized below together with the extensions. Extensions are highlighted by underlining.
For formulation of conditions, the Object Constraint Language (OCL) specified by UML is
used (see reference [J6]).

An incoming event in the event column is defined by

<origin> ':' <event-name> ['('<arguments>')']

Processing of the event is described by the following sequence

[<guard-condition>] [<action-expression>]* [<send-clause>]* [<state-transition>]
<guard-condition> ::= '[' <condition> ']'
<condition> ::= conditional expression formulated in OCL
<action-expression> ::= '/' <action-name> ['(' <arguments> ')']
<send-clause> ::= '^' <target> '.' <event-name> ['(' <arguments> ')']
<state-transition> ::= ' ' <new-state>

Transition to self is not shown in the tables.

CCSDS 914.0-M-1 Page 4-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

In extension of the UML notation actions can be simple actions or compound actions.
Compound actions are displayed in capital letters and are expanded using simple pseudo-
code (IF, THEN, ELSE, END IF) together with the notational elements shown above.

For a detailed description of the syntax and an explanation of how it is to be interpreted, the
UML specification should be consulted (see reference [J6]).

4.3 GENERAL ERROR HANDLING CONVENTIONS

For events received from another component, the following general rules are applied if the
event is illegal in the current state:

a) If violation is due to misbehavior of the sending component the state shall not be
changed and the request shall be rejected using a return code that indicates an error.
In addition, the event shall be entered to the system log. When receiving such a
return code, the invoking component is expected to abort the association and to
provide as much information as possible to support investigation and correction of the
problem.

b) In cases where the invoking component may not yet have become aware of a state
change, the request shall be rejected by returning a code indicating that the state has
changed. For instance, the service element may not yet have seen an UNBIND
invocation when sending an invocation PDU. In this case, the proxy shall respond to
the request with a return code indicating ‘unbind pending’. This shall not be
considered an error. The invoking component is expected to check the return code
and adjust its state accordingly.

c) If the protocol error is due to a problem in the peer system, and it is not the
responsibility of the sending component to check and handle the condition, the
receiving component shall either generate and send a return with a negative result and
the appropriate diagnostic, or abort the association. In this case, the state shall be
adjusted and the method used to send the event returns with a code indicating success.

4.4 STATE TABLE FOR ASSOCIATIONS

4.4.1 PROCESSING CONTEXT

4.4.1.1 Overview

The presentation of the state table is based on the model described in section 2. The
processing context used for specification of the state table is shown in figure 4-1. The proxy
shall receive events either from the network interface (NIF) or the client interface (CIF) and
send events to both the network interface and the client interface. The client interface shall
include the interface ISLE_SrvProxyInitiate, which is exported by the proxy
component and ISLE_SrvProxyInform, which is exported by the service element
component.

CCSDS 914.0-M-1 Page 4-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

PROXY

Association
Object

Network Interface (NIF)

Client
Interface

(CIF)

Locator
Interface

I3

ISLE_Locator

I1

ISLE_SrvProxyInitiate

I2

ISLE_SrvProxyInform

I1 I2

Client (e.g. Service Element)

I3

STATE MACHINE

CIF post-processing

CIF pre-processing

NIF pre-processing

Figure 4-1: Processing Context for the Association State Table

When a BIND invocation is received from the network interface, the proxy shall create an
association object of the correct service type and request the locator interface
(ISLE_Locator) to locate a service instance. The locator interface shall return a
reference to the interface ISLE_SrvProxyInform, if possible.

In order to simplify the state tables, processing steps that are common for all PDUs passed
across an interface, and independent of the state of the association, have been excluded from
the state tables. These are allocated to ‘pre-processing’ and ‘post-processing’ functions.

As shown in figure 4-1, it is assumed that pre-processing shall be performed on an event
before it is passed to the state machine. If pre-processing fails, the associated action shall be
performed as part of the pre-processing tasks and the event shall not be forwarded to the state
machine. Post-processing of an event shall be performed after the event has been processed
by the state machine. If a pre-processing or post-processing function encounters a situation
in which the association must be aborted, it shall generate an internal event (INT: PeerAbort
(reason)), which shall then be processed by the state machine.

Pre-processing tasks are defined for events received from the client interface and for events
received from the network interface. Post-processing is only defined for events received
from the client interface.

It is stressed that the specification of pre- and post-processing functions has only the purpose of
simplifying the presentation of the state table. They do not prescribe any specific
implementation. The only requirement on implementations is that the behavior defined by
combination of the state table and the auxiliary functions shall actually be provided by the proxy.

CCSDS 914.0-M-1 Page 4-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.4.1.2 Pre-Processing of Events Received from the Network Interface

Pre-processing of events received from the network interface includes the following tasks:

a) Decoding of the PDU. If decoding fails, the association shall be aborted.

b) Authentication of the peer identity, if authentication is required for the PDU. If
authentication fails, the PDU shall be ignored and not passed to the state machine.
3.2.6.3.2 defines optional exceptions from this rule. These exceptions are not
considered in this subsection.

c) Verification that the PDU is supported for the service type handled by the association.
If that is not the case, the association shall be aborted with the diagnostic ‘encoding
error’.

d) For operation returns, retrieval of the operation object, which holds the associated
operation invocation, using the invocation identifier. If the associated invocation
cannot be found, the association shall be aborted with the diagnostic ‘unsolicited
invocation identifier’. If the operation object is located, it shall be removed from the
list of pending returns.

4.4.1.3 Pre-Processing of Events Received from the Client Interface

Pre-processing of events received from the client interface includes the following tasks:

a) Verification that the PDU passed with the event is supported for the service type
handled by the association. If the check fails, the event shall be rejected with an error
indicating ‘unknown PDU’.

b) Verification that the PDU can be queued for transmission. If the queue is full, the
event shall be rejected with an error indicating ‘overflow’.

4.4.1.4 Post-Processing of Events Received from the Client Interface

Post-processing of events received from the client interface includes the following tasks:

a) For invocations of confirmed operations, adding the operation object to the list of
pending returns.

b) Generation and insertion of the credentials if authentication is required for the PDU.
For PDUs of the BIND operation, insertion of the local application identifier. This
step is omitted in the special ‘pass-through’ mode as specified in 3.2.7.

c) Encoding of the PDU.

d) Queuing of the PDU for transmission.

e) Transmission of the PDU, as soon as possible. If notification of transfer has been
requested for that PDU, the task shall include the following steps:

CCSDS 914.0-M-1 Page 4-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1) if the PDU can be sent immediately, the event shall be acknowledged with a
return code indicating ‘PDU transmitted’;

2) otherwise, the internal event ‘PDU transmitted’ shall be generated as soon as the
PDU has been sent.

 If the PDU is discarded on request of the client or because of an abort, the event
‘PDU Transmitted’ shall not be generated.

4.4.2 STATES

S1 - UNBOUND An association in the initiator role has been created, but no
BIND has been initiated yet or the association has been
unbound or aborted. For an association in the responder role,
the association object does not exist.

S2 - BIND PEND A BIND invocation PDU has been processed successfully; the
associated BIND return has not yet been received.

S3 - BOUND The BIND operation has been completed successfully.

S4 - LOC UNBIND PEND An UNBIND invocation issued by the local client has been
processed; the peer proxy has not yet responded.

S5 - REM UNBIND PEND An UNBIND invocation received from the peer proxy has
been processed; the local client has not yet responded.

4.4.3 EVENTS

4.4.3.1 Events Received from the Client Interface (ISLE_SrvProxyInitiate)

BindInvoke call to InitiateOpInvoke() with a BIND operation
BindReturn call to InitiateOpReturn() with a BIND operation
UnbindInvoke call to InitiateOpInvoke() with a UNBIND operation
UnbindReturn call to InitiateOpReturn() with a UNBIND operation
PeerAbort call to InitiateOpInvoke() with a PEER-ABORT operation
SrvPduInvoke call to InitiateOpInvoke() with an operation that is valid for

the given service type
SrvPduReturn call to InitiateOpReturn() with an operation that is valid for

the given service type
DiscardBuffer call to DiscardBuffer()

4.4.3.2 Events Sent to the Client Interface (ISLE_SrvProxyInform)

BindInvoke call to InformOpInvoke() with a BIND operation

CCSDS 914.0-M-1 Page 4-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

BindReturn call to InformOpReturn() with a BIND operation
UnbindInvoke call to InformOpInvoke() with a UNBIND operation
UnbindReturn call to InformOpReturn() with a UNBIND operation
PeerAbort call to InformOpInvoke() with a PEER-ABORT operation
ProtocolAbort call to ProtocolAbort()
SrvPduInvoke call to InformOpInvoke() with an operation that is valid for the

given service type
SrvPduReturn call to InformOpReturn() with an operation that is valid for the

given service type
PDUTransmitted call to PDUTransmitted()

4.4.3.3 Events Sent to the Locator Interface (ISLE_Locator)

locateInstance call to LocateInstance()

4.4.3.4 Events Received from the Network Interface

BindInvoke reception of a BIND invocation PDU
BindReturn reception of a BIND return PDU
UnbindInvoke reception of a UNBIND invocation PDU
UnbindReturn reception of a UNBIND return PDU
SrvPduInvoke reception of a PDU with an invocation that is valid for the service

type
SrvPduReturn reception of a PDU with a return that is valid for the service type
PeerAbort indication of a peer abort procedure initiated by the peer proxy
Communication failure any indication from the local communication service provider of a

communications failure or breakdown of the connection

4.4.3.5 Events Sent to the Network Interface

BindInvoke BIND invocation PDU
BindReturn BIND return PDU
UnbindInvoke UNBIND invocation PDU
UnbindReturn UNBIND return PDU
SrvPduInvoke a PDU with an invocation that is valid for the service type
SrvPduReturn a PDU with a return that is valid for the service type

4.4.3.6 Internal Events

PDU transmitted A PDU for which notification of transfer has been requested has
been transmitted.

Peer Abort The need to abort the association has been detected by one of the
pre-processing functions.

CCSDS 914.0-M-1 Page 4-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.4.4 PREDICATES

role = initiator The association initiates the BIND operation. This predicate is true
for all associations that have been created on request of the client.

role = responder The association responds to a BIND invocation. This predicate is
true for all associations that have been created by the proxy because
of an incoming BIND invocation.

result = positive The result parameter in the PDU indicates ‘positive result’.
result = negative The result parameter in the PDU indicates ‘negative result’.
instance located The locator has returned an instance of the client interface.
id registered The initiator identifier (user name) presented by a BIND invocation

PDU or the responder identifier presented in the BIND return PDU
is registered in the configuration database of the proxy.

responder = expected The responder identifier in a BIND return PDU is the one expected.
If the role of the association is ‘initiator’, the ID must be the one
specified by the BIND operation object. If the role of the
association is ‘responder’, it must match the local application
identifier.

version supported The version number presented in the BIND invocation is supported
for the specified service type.

type supported The service type presented in the BIND invocation PDU is
supported.

bind arguments ok The arguments of a BIND invocation issued by the local client
match the definitions in the configuration database of the proxy.
The expected responder identifier is registered.

4.4.5 ACTIONS

4.4.5.1 Discrete Actions

/abort connection(diagnostic) All PDUs queued for transmission shall be discarded and the
connection to the peer system terminated in an abortive manner,
using the most efficient procedure available. The procedure applied
must make sure that its effect can be interpreted by the peer as a
PEER-ABORT and that the diagnostic is made available to the peer
proxy.

/cleanup All resources allocated by the association shall be released. In
particular, all operation objects to which the association still holds a
reference shall be released and the list of pending returns cleared.

/create association Create a new association object in the role of a responder. In a strict
sense, this action is performed before processing of the state table
starts.

/delete association The association object is deleted; following this action processing of
the state table shall be assumed to cease. Therefore, no state change
shall be indicated.

CCSDS 914.0-M-1 Page 4-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

/prevent If the technology is connection-oriented and a single connection is
used for an association, the event cannot happen. If the event can
occur, the proxy shall handle it in a manner that the operation of the
API is not affected.

/reject(reason) The function call returns with a result code indicating the reason.
/terminate connection The connection to the peer system is released in an orderly manner.
/discard invocations Remove all invocation PDUs from the send queue and discard them.
/discard buffers Remove all TRANSFER-BUFFER PDUs from the send queue and

discard them.

4.4.5.2 Compound Actions

/ABORT(diagnostic) is defined as

/abort connection(diagnostic)
^CIF.PeerAbort(diagnostic)
/cleanup
IF role = initiator THEN S1
ELSE /delete association
END IF

CCSDS 914.0-M-1 Page 4-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

/PROCESS BIND INV is defined as

IF not id registered THEN
 ^NIF.UnbindReturn(‘access denied’)
 /cleanup /delete association
ELSE
 IF not type supported THEN
 ^NIF.UnbindReturn(‘type not supported’)
 /cleanup /delete association
 ELSE
 IF not version supported THEN
 ^NIF.UnbindReturn(‘version not supported’)
 /cleanup /delete association
 ELSE
 ^Locator.locateInstance
 IF not instance located THEN
 ^NIF.UnbindReturn(error returned by locateInstance)
 /cleanup /delete association
 ELSE
 ^CIF.BindInvoke
 S2
 END IF
 END IF
 END IF
END IF

NOTE – If the initiator identifier is registered and authentication is required,
authentication must be performed before processing starts. If authentication fails,
the request shall be ignored.

CCSDS 914.0-M-1 Page 4-9 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 4-10 October 2008

/PROCESS BIND RET is defined as

IF not id registered THEN
 /ABORT(‘access denied’)
 /cleanup S1
ELSE
 IF not responder = expected THEN
 /ABORT(‘unexpected responder id’)
 /cleanup S1
 ELSE
 ^CIF.BindReturn
 IF result = positive THEN
 S3
 ELSE
 /cleanup S1
 END IF
 END IF
END IF

NOTE – If the responder identifier is registered and authentication is required,
authentication must be performed before processing starts. If authentication fails,
the request shall be ignored.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

4.4.6 STATE TABLE FOR ASSOCIATIONS C
C

SD
S 914.0-M

-1
Page 4-11

O
ctober 2008

 S1- UNBOUND {1} S2 - BIND PEND S3 - BOUND S4 - LOC UNBIND PEND S5 - REM UNBIND PEND

CIF:
BindInvoke

[bind arguments ok]
 ^NIF.BindInvoke
 S2
[not bind arguments ok]
 /reject(config error)

 /reject(protocol error)

CIF:
BindReturn

/reject(protocol error) [role = initiator]
 /reject(protocol error)
[role = responder]
 ^NIF.BindReturn
 [result = positive]
 S3
 [result = negative]
 /terminate connection
 /cleanup
 /delete association
 {12}

 /reject(protocol error)

CIF:
UnbindInvoke

 /reject(protocol error) [role = initiator]
 ^NIF.UnbindInvoke
 S4
[role = responder]
 /reject(protocol error)

 /reject(protocol error)

CIF:
UnbindReturn

 /reject(protocol error) [role = intiator]
 /reject(protocl error)
 [role = responder]
 ^NIF:UnbindReturn
 /terminate connection
 /cleanup
 /delete association
 {12}

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A

PI FO
R

 SLE TR
A

N
SFER

 SER
V

IC
ES—

C
O

R
E SPEC

IFIC
A

TIO
N

C
C

SD
S 914.0-M

-1
Page 4-12

O
ctober 2008

 S1- UNBOUND {1} S2 - BIND PEND S3 - BOUND S4 - LOC UNBIND PEND S5 - REM UNBIND PEND

CIF:
PeerAbort

/reject(protocol error) /abort connection(diagnostic)
 /cleanup
 [role = initiator]
 S1
 [role = responder]
 /delete association
 {12}

CIF:
SrvPduInvoke

 /reject(protocol error) ^NIF.SrvPduInvoke /reject(protocol error) /reject(unbind pending)
 {2}

CIF:
SrvPduReturn

 /reject(protocol error) ^NIF.SrvPduReturn /reject(protocol error) ^NIF.SrvPduReturn
 {3}

CIF:
DiscardBuffer

 /reject(protocol error) /discard buffers /reject(protocol error) /discard buffers

NIF:
BindInvoke

create association
/PROCESS BIND INV
 {4}

 /ABORT(protocol eror)
 {5}

NIF:
BindReturn

/prevent [role = initiator]
 /PROCESS BIND RET
[role = responder]
 /ABORT(protocol error)
 {6}

 /ABORT(protocol error)
 {7}

NIF:
UnbindInvoke

/prevent /ABORT(protocol erorr) [role = initiator]
 /ABORT(protocol error)
[role = responder]
 /discard invocations
 ^CIF.UnbindInvoke
 S5

 /ABORT(protocol error)

NIF:
UnbindReturn

/prevent /ABORT(protocol error) [role = initiator]
 ^CIF.UnbindReturn
 /cleanup
 S1
[role = responder]
 /ABORT(protocol error)

/ABORT(protocol error)

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A

PI FO
R

 SLE TR
A

N
SFER

 SER
V

IC
ES—

C
O

R
E SPEC

IFIC
A

TIO
N

C
C

SD
S 914.0-M

-1
Page 4-13

O
ctober 2008

 S1- UNBOUND {1} S2 - BIND PEND S3 - BOUND S4 - LOC UNBIND PEND S5 - REM UNBIND PEND

NIF:
PeerAbort

/prevent ^CIF.PeerAbort
 /cleanup
 [role = initiator]
 S1
 [role = responder]
 /delete associaton

NIF:
Communicatio
n failure

/prevent ^CIF.ProtocolAbort
 /cleanup
 [role = initiator]
 S1
 [role = responder]
 /delete associaton

NIF:
SrvPduInvoke

/prevent /ABORT(protocol error) ^CIF.SrvPduInvoke ^CIF.SrvPduInvoke
 {8}

/ABORT(protocol error)
 {9}

NIF:
SrvPduReturn

/prevent /ABORT(protocol error) ^CIF.SrvPduReturn ^CIF.SrvPduReturn
 {10}

/ABORT(protocol error)
 {11}

INT:
PDU
Transmitted

not applicable ^CIF.PDUTransmitted

INT:
Peer Abort
(reason)

not applicable /ABORT(reason)

NOTES

1 With exception of the event NIF: BindInvoke the events in the state UNBOUND can only occur for an association in the
initiator role. An association in the responder role is created when the event NIF: BindInvoke has been received. If the
BIND invocation is accepted, the state is changed to BIND PENDING. Otherwise the object is deleted again.

2 If UNBIND has been initiated by the peer, the local client must not transmit any further invocations. In a multi-threaded
system, the client may not have seen the UNBIND yet. The special return code ‘unbind pending’ is meant to indicate to the
client that this action is not a bug (protocol error) but cannot be accepted because the state has already changed.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

C
C

SD
S 914.0-M

-1
Page 4-14

O
ctober 2008

3 If UNBIND has been initiated by the peer, the local client may transmit all pending returns before the UNBIND return.

4 The cell only contains an entry for the responder role. For the initiator role, it is assumed that proxy will not be listening for
BIND invocations such that this event cannot occur in the state UNBOUND.

5 The event can only occur, if the technology and the implementation allow transmission of a BIND invocation on an established
association. In this case it could theoretically happen that the BIND invocation contains an initiator identifier that differs from
the one presented in the original BIND invocation. If such an event is possible, the proxy is expected to generate an access
violation alarm in addition to the actions specified.

6 If the (illegal) BIND return received by an association in the responder role carries a responder identifier, that is not expected,
the proxy generates an access violation alarm in addition to the action specified.

7 The event can only occur, if the technology and the implementation allow transmission of a BIND return on an established
association. In this case, it could theoretically happen that the BIND return contains a responder identifier that differs from the
one presented in the original BIND return. If such an event is possible, the proxy is expected to generate an access violation
alarm in addition to the actions specified.

8 If UNBIND has been sent by the local client, the peer should no longer send any invocations. However, the peer may not yet
have seen the UNBIND invocation. Therefore, invocations are passed on to local client, which should ignore them.

9 After sending an UNBIND invocation, the peer must not send any further invocations.

10 If UNBIND has been sent by the local client, the peer may send all pending returns before sending the UNBIND return.

11 After sending an UNBIND invocation, the peer must not send any returns.

12 Following deletion of the association object, processing of the state table is assumed to cease. Therefore, no state change is
indicated.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5 STATE TABLES FOR SERVICE INSTANCES

4.5.1 INTRODUCTION

Processing of a service instance within the API Service Element is defined by the following
state tables:

a) SLE Service Provider

1) Common state table (see 4.5.3.2);

2) Return link SLE services state table (see 4.5.3.3);

3) Forward link SLE services state table (see 4.5.3.4).

b) SLE Service User

1) Common state table (see 4.5.4.2);

2) Return link SLE services state table (see 4.5.4.3);

3) Forward link SLE services state table (see 4.5.4.4).

The common state tables define processing of all events that have identical processing
requirements for return services and for forward services. The specific tables for return
services and forward services specify processing of the remaining events. They must be
understood as a supplement to the common tables.

The common state tables are applicable to all service types; the return link tables and the
forward link tables are applicable for all return link services and all forward link services
respectively. Because some service types only use a subset of the SLE operations defined,
not all events defined in the tables can occur for those services, unless there are serious errors
in the application or in the API Proxy. If such events are encountered, the service instance is
expected to reject them with an appropriate error code. These actions are not specifically
shown in the state table.

For some of the actions defined in the state tables processing is service-type specific, but the
fact that the action must be performed is independent of the service type. Obviously, actions
related to events that are not supported by a given service type, are not applicable for that
service type.

CCSDS 914.0-M-1 Page 4-15 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.2 PROCESSING CONTEXT

4.5.2.1 Overview

The state tables are based on the model presented in section 2. The processing context is
used for specification of the state tables is shown in figure 4-2. A service instance shall
receive events from the Proxy Interface (PIF) and the Application Interface (AIF) and send
events to both the Proxy Interface and the Application Interface.

The Proxy Interface comprises the interfaces ISLE_SrvProxyInitiate, exported by the
proxy for an association and the interface ISLE_SrvProxyInform, exported by the
service element. The Application Interface includes the interface ISLE_ServiceInform,
exported by the application, and ISLE_ServiceInitiate, exported by the service
element.

In addition, the service instance shall receive updates for service parameters from the
application via the service-type specific interface I<SRV>_SIUpdate, which is referred to
as Management Interface (MIF) in the figure. These parameters are needed to respond to a
GET-PARAMETER request and to generate status reports.

Finally the locator interface (ISLE_Locator), by which the service element is informed of
an incoming BIND invocation, needs to be considered. This interface is not shown in the
figure.

SERVICE
INSTANCE

Application

Proxy

I2
Proxy

Interface
(PIF)

I1

AIF post-processing PIF pre-processing

STATE MACHINE

AIF pre-processing

I3
Application

Interface
(AIF)

I4I5

I1

ISLE_SrvProxyInitiate
Management
Interface
(MIF)

I2

ISLE_SrvProxyInform

ISLE_ServiceInform

I3

ISLE_ServiceInitiate

I4

I<SRV>_SIUpdate

I5

PIF post-processing

Figure 4-2: Processing Context for the Service Instance State Table

CCSDS 914.0-M-1 Page 4-16 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

In order to simplify the state tables, processing steps that are common for all PDUs passed
across an interface and are independent of the state of the service instance have been
excluded from the state tables. These are allocated to ‘pre-processing’ and ‘post-processing’
functions.

As shown in figure 4-2, it is assumed that pre-processing is performed on an event before it is
passed to the state machine. If pre-processing fails, the associated action shall be performed
as part of the pre-processing function, and the event shall not be forwarded to the state
machine. Post-processing of an event shall be performed after the event has been processed
or generated by the state machine. If a pre-processing function or a post-processing function
encounters a situation in which the association must be aborted, it shall generate an internal
event (INT: Peer Abort(reason)), which shall then be processed by the state machine.

Furthermore, the state tables do not include processing performed by call to the locator
interface. This processing is described to more detail in 4.5.2.6.

It is stressed that the specification of pre- and post-processing functions as well as the details
related to calls on the locator interface have only the purpose of simplifying the presentation
of the state tables. They do not prescribe any specific implementation. The only requirement
on implementations is that the behavior defined by the combination of the state tables and the
auxiliary functions shall actually be provided by service instance objects.

4.5.2.2 Pre-Processing of Events Received from the Proxy

Pre-processing of events received from the proxy includes the following tasks:

a) Verification that the PDU passed with the event is supported by the service type
handled by the service instance. If that check fails, the event shall be rejected with
the error ‘unknown PDU’.

b) Verification that the PDU is compatible with the role of the service instance (SLE
service user or SLE service provider). If the check fails, the association shall be
aborted with the diagnostic ‘protocol error’.

c) Checking that an operation object passing a return is actually on the list of pending
remote returns. If that check fails, the request shall be rejected, because this problem
should have been handled by the proxy. Otherwise the operation object shall be
removed from the list of pending remote returns.

d) Canceling of the return timer for a return PDU.

e) Checking for duplicate invocation identifiers for confirmed invocations. If duplicate
invocation identifiers are detected, the pre-processing function shall generate and
send a return PDU with a negative result and the diagnostic ‘duplicate invocation id’.

f) Checking of invocation and return arguments on completeness, consistency and
range. If there is an error, the reaction depends on the type of the PDU. For a
confirmed invocation, the pre-processing function shall generate and send a return

CCSDS 914.0-M-1 Page 4-17 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

PDU with a negative result and the appropriate diagnostic. In all other cases it shall
abort the association with the appropriate diagnostic code.

g) Checking of the consistency of the PDU and the parameters with the configuration of
the service instance. If these checks fail, the function shall generate a return with a
negative result and the appropriate diagnostic. These checks are service-type
specific.

The checks and actions are partially service-type specific.

4.5.2.3 Post-Processing of Events Received from the Proxy

Post-processing of events received from the proxy includes the following tasks:

a) adding the operation object to the list of pending local returns for confirmed
invocations;

b) passing of the PDU to the application.

These actions are independent of the service type.

4.5.2.4 Pre-Processing of Events Received from the Application

Pre-processing of events received from the application includes:

a) Checking that the PDU is valid for the service type handled by the service instance.

b) Verification that the PDU is compatible with the role of the service instance (SLE
service user or SLE service provider).

c) Verification that an operation object used to forward a return PDU is on the list of
pending local returns.

d) Checking of invocation and return arguments on completeness, consistency and
range.

e) Checking of the consistency of the PDU and the parameters with the configuration of
the service instance.

If there is any error, the pre-processing function shall reject the request with the appropriate
return code. These tasks are partially service-type specific.

4.5.2.5 Post-Processing of Events Generated or Received from the Application

Post-processing of events received from the application includes:

a) Generation of a unique invocation identifier and inserting the id into the operation
object, if the PDU transmitted is a confirmed invocation.

CCSDS 914.0-M-1 Page 4-18 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) Addition of the operation object to the list of pending remote returns and starting of
the return timer for confirmed invocations.

c) Forwarding the operation to the proxy for transmission. If the transfer request is
rejected by the proxy, e.g., because the send queue is full, the association shall be
aborted.

d) Because of the flow control mechanisms built into the API, queue overflow cannot be
caused by transfer of space link data-units.

These tasks are not service-type specific.

4.5.2.6 Processing of Calls to the Locator Interface

Processing of calls to the locator interface includes the following steps:

a) Location of the service instance requested by the BIND invocation. If the service
instance cannot be found, the function shall return with an error ‘no such service
instance’.

b) Verification that the initiator identifier matches the one defined for the service
instance. If that is not the case, the function shall return with an error ‘service
instance not accessible to this initiator’.

c) Verification that the service instance is not already bound. If the service instance is
bound, the function shall return with an error ‘already bound’.

d) Verification that the scheduled provision period of the service instance has started and
has not yet ended. If the check fails, the function shall return with the error ‘invalid
time’.

When receiving an error response from the locator, the proxy shall generate a BIND return
with a negative result and the diagnostic related to the error code returned. If the locator
returns a code indicating success and a pointer to the interface ISLE_SrvProxyInform,
the proxy shall pass the BIND invocation to that interface. Except for location of the service
instance, an implementation may choose to perform these checks by the service instance,
when the BIND invocation has been passed to the interface ISLE_SrvProxyInform. If
that is done, the service instance must generate the BIND return PDU.

4.5.3 PROVIDER SIDE STATE TABLES

4.5.3.1 States

All provider side state tables use the same set of states. The main states are identical to those
defined in the CCSDS Recommended Standards for SLE transfer services. Sub-states have
been added to allow presentation of further details related to the interactions with the
application and the proxy. The states are defined as follows.

CCSDS 914.0-M-1 Page 4-19 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

UNBOUND:UNBOUND No user is bound.

UNBOUND:BIND PEND A BIND invocation has been received, the application has not
yet responded.

READY:BOUND A BIND has been sent to the user and no START invocation
has been received yet, or a STOP operation has been
completed.

READY:START PEND A START invocation has been received, the application has not
yet responded.

READY:UNBIND PEND An UNBIND invocation has been received, the application has
not yet responded.

ACTIVE:ACTIVE A START return with a positive result has been sent to the
user.

ACTIVE:STOP PEND A STOP invocation has been received, the application has not
yet responded.

NOTE – Sub-states are only shown in the tables if needed. If the processing is identical
for all sub-states, only the main state is entered in the table.

4.5.3.2 Common State Table—User Initiated Binding

4.5.3.2.1 Events

4.5.3.2.1.1 Events received from the Application Interface
(ISLE_ServiceInitiate)

BindRet call to InitiateOpReturn() with a BIND operation
UnbindRet call to InitiateOpReturn() with a UNBIND operation
PeerAbortInv call to InitiateOpInvoke() with a PEER-ABORT operation

4.5.3.2.1.2 Events sent to the Application Interface (ISLE_ServiceInform)

BindInv call to InformOpInvoke() with a BIND operation
UnbindInv call to InformOpInvoke() with a UNBIND operation
PeerAbortInv call to InformOpInvoke() with a PEER-ABORT operation
ProtocolAbort call to ProtocolAbort()
PPends call to ProvisionPeriodEnds()

CCSDS 914.0-M-1 Page 4-20 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.3.2.1.3 Events received from the Management Interface (I<SRV>_SIUpdate)

SetParameter update of a service parameter

4.5.3.2.1.4 Events received from the Proxy Interface (ISLE_SrvProxyInform)

BindInv call to InformOpInvoke() with a BIND operation
UnbindInv call to InformOpInvoke() with a UNBIND operation
GetPrmInv call to InformOpInvoke() with a GET-PARAMETER

operation
ScheduleStatRepInv call to InformOpInvoke() with a SCHEDULE-STATUS-

REPORT operation
PeerAbortInv call to InformOpInvoke() with a PEER-ABORT operation
ProtocolAbort call to ProtocolAbort()

4.5.3.2.1.5 Events sent to the Proxy Interface (ISLE_SrvProxyInitiate)

BindRet call to InitiateOpReturn() with a BIND operation
UnbindRet call to InitiateOpReturn() with a UNBIND operation
GetPrmRet call to InitiateOpReturn() with a GET-PARAMETER

operation
ScheduleStatRepRet call to InitiateOpReturn() with a SCHEDULE-STATUS-

REPORT operation
StatusRepInv call to InitiateOpInvoke() with a STATUS-REPORT

operation
PeerAbortInv call to InitiateOpInvoke() with a PEER-ABORT operation

4.5.3.2.1.6 Internal Events

Report timer expired the periodic status report timer has expired
Return timeout the time to wait for a specific return-PDU has elapsed
Provision period ends the service instance provision period has ended
Peer Abort peer abort event generated by a pre-processing function

4.5.3.2.2 Predicates

delivery mode = offline The delivery mode of the service instance is ‘offline’.
report timer active The periodic status report timer is active.
reason = end The unbind-reason is ‘end of service provision’.
reason <> end The unbind-reason is not equal ‘end of service provision’.
result = positive The result parameter in the PDU indicates ‘positive result’.
result = negative The result parameter in the PDU indicates ‘negative result’.
type = stop The type parameter in the SCHEDULE-STATUS-REPORT

invocation is set to ‘stop’.

CCSDS 914.0-M-1 Page 4-21 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

type = periodically The type parameter in the SCHEDULE-STATUS-REPORT
invocation is set to ‘periodically’.

4.5.3.2.3 Actions

4.5.3.2.3.1 Discrete Actions

/reject(reason) Reject the event by returning an error code to the function invoking
the event.

/cancel report timer Cancel the periodic status-report timer, if active.
/start report timer Start the periodic status-report timer.
/generate end of PP Generate the internal event ‘Provision period ends’.
/clear remote returns Cancel return timers for all pending remote returns, clear the list of

pending remote returns, and release operation objects.
/store parameter value Store the value of the service parameter passed.

4.5.3.2.3.2 Compound Actions

/PROCESS SSREP(type) is defined as

IF delivery mode = offline THEN
 /reject(not supported in this delivery mode)
ELSE
 IF type = stop THEN
 IF report timer active THEN
 /cancel report timer
 ^PIF.ScheduleStatusRepRet(positive result)
 ELSE
 PIF.ScheduleStatusRepRet(already stopped)
 END IF
 ELSE
 /cancel report timer
 ^PIF.ScheduleStatusRepRet(positive result)
 ^PIF.StatusReportInv
 IF type = periodically THEN
 /start report timer
 END IF
 END IF
END IF

/ABORT(diagnostic)

Abort processing is forward/return-service specific, see /ABORT in 4.5.3.3 and 4.5.3.4.

CCSDS 914.0-M-1 Page 4-22 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 4-23 October 2008

/CLEANUP

Cleanup processing is forward/return-service specific, see /CLEANUP in 4.5.3.3 and 4.5.3.4.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

4.5.3.2.4 Common State Table—Provider Side C
C

SD
S 914.0-M

-1
Page 4-24

O
ctober 2008

A
PI FO

 SLE TR
A

N
SFER

 SER
V

IC
ES—

C
O

R
E SPEC

IFIC
A

TIO
N

R

 1 UNBOUND 2 READY 3 ACTIVE

1.1 UNBOUND {1} 1.2 BIND PEND 2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND

PIF:
BindInv

^AIF.BindInv
 1.2 {2}

 /reject(protocol error) {3}

AIF:
BindRet

/reject(protocol error) ^PIF.BindRet
[result = positive]
 2.1
[result =negative]
 1.1

 /reject(protocol error)

PIF:
UnbindInv

 /reject(protocol error) /clear remote returns
/cancel report timer
^AIF.UnbindInv

 2.3

/ABORT(protocol err)
 1.1

/reject(protocol error) /ABORT(protocol error)
 1.1

AIF:
UnbindRet

 /reject(protocol error) ^PIF.UnbindRet
/CLEANUP
[reason = end]
/generate end of PP
 1.1
[reason <> end]
 1.1

/reject(protocol error)

PIF:
GetPrmInv

 /reject(protocol error) ^PIF.GetPrmRet /reject(protocol error) ^PIF.GetPrmRet

PIF:
ScheduleStatRepInv

 /reject(protocol error) /PROCESS SSREP /reject(protocol error) /PROCESS SSREP

PIF:
PeerAbortInv

/reject(protocol error) ^AIF.PeerAbortInv
 /CLEANUP
 1.1

AIF:
PeerAbortInv

/reject(protocol error) ^PIF.PeerAbortInv
 /CLEANUP
 1.1

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A

PI FO
R

 SLE TR
A

N
SFER

 SER
V

IC
ES—

C
O

R
E SPEC

IFIC
A

TIO
N

C
C

SD
S 914.0-M

-1
Page 4-25

O
ctober 2008

 1 UNBOUND 2 READY 3 ACTIVE

1.1 UNBOUND {1} 1.2 BIND PEND 2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND

PIF:
ProtocolAbort

/reject(protocol error) ^AIF.ProtocolAbort
 /CLEANUP
 1.1

MIF:
SetParameter

 /store parameter value

INT:
PeerAbort(reason)

N/A /ABORT(reason)
 1.1

INT:
Report timer expired

N/A N/A ^PIF.StatusRepInv
 /start report timer

N/A {4} ^PIF.StatusRepInv
/start report timer

INT:
Return timeout {5}

N/A N/A /ABORT (return timeout)
 1.1

N/A {4} /ABORT(return timeout)
 1.1

INT:
Provision period ends

^AIF.PPends /ABORT(end of Provision Period)
 ^AIF.PPends
 1.1

NOTES

1 In the state UNBOUND, events other than a BIND invocation can be received from the proxy only when the proxy fails to
forward the initial BIND invocation.

2 All checks that need to be performed by the service element are performed by the method LocateInstance() defined by
the Locator interface. If any of these checks fail, that function returns an error and the proxy responds with the associated
BIND return.

3 The event can only occur when a BIND invocation is received on an established association, which must be prevented by the
proxy. If a BIND invocation is received on a new association, the event must be passed to the locator, which will reject it with
the error ‘already bound’.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

C
C

SD
S 914.0-M

-1
Page 4-26

O
ctober 2008

4 This is N/A as the timer was cancelled when the UNBIND invocation arrived.

5 In this version of the Recommended Practice the provider never sends confirmed operations, so this event cannot happen if the
API software is correctly implemented.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.3.3 Return Link SLE Services

4.5.3.3.1 Events

4.5.3.3.1.1 Events received from the Application Interface
(ISLE_ServiceInitiate)

StartRet call to InitiateOpReturn() with a START operation
StopRet call to InitiateOpReturn() with a STOP operation
TransferDataInv call to InitiateOpInvoke() with a TRANSFER-DATA

operation
SyncNotifyInv call to InitiateOpInvoke() with a SYNC-NOTIFY operation

4.5.3.3.1.2 Events sent to the Application Interface (ISLE_ServiceInform)

StartInv call to InformOpInvoke() with a START operation
StopInv call to InformOpInvoke() with a STOP operation
ResumeDataTransfer call to ResumeDataTransfer()
PeerAbortInv call to InformOpInvoke() with a PEER-ABORT operation

4.5.3.3.1.3 Events received from the Proxy Interface (ISLE_SrvProxyInform)

StartInv call to InformOpInvoke() with a START operation
StopInv call to InformOpInvoke() with a STOP operation
PDUTransmitted call to PDUTransmitted()

4.5.3.3.1.4 Events sent to the Proxy Interface (ISLE_SrvProxyInitiate)

StartRet call to InitiateOpReturn() with a START operation
StopRet call to InitiateOpReturn() with a STOP operation
TransferBufferInv call to InitiateOpInvoke() with a TRANSFER-BUFFER

operation. This event is always transmitted with the request to
notify transmission of the PDU.

DiscardBuffer call to DiscardBuffer()
PeerAbortInv call to InitiateOpInvoke() with a PEER-ABORT operation

4.5.3.3.1.5 Internal Events

release timer expired generated when the release timer expires

CCSDS 914.0-M-1 Page 4-27 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.3.3.2 Predicates

result = positive The result parameter in the PDU indicates ‘positive result’.
result = negative The result parameter in the PDU indicates ‘negative result’.
timely online The delivery mode is timely online.
complete online The delivery mode is complete online.
online The delivery mode is either timely online or complete online.
buffer full The transfer buffer is full.
buffer queued A transfer buffer has been passed to the proxy for transfer and the

PDU Transmitted event has not yet been received for that buffer.
buffer empty The transfer buffer is empty.
buffer discarded The proxy has actually discarded the queued transfer buffer as

indicated by the return code.
buffer transmitted The transfer buffer passed to the proxy could be transmitted

immediately as indicated by the return code of the function.
data transfer suspended The application has been requested to suspend data transfer to the

user.
end of data The SYNC-NOTIFY invocation is ‘end of data’.

4.5.3.3.3 Actions

4.5.3.3.3.1 Discrete Actions

/reject(reason) Reject the event by returning an error code to the function invoking
the event.

/clear remote returns Cancel return times for all pending remote returns, clear the list of
pending remote returns, and release operation objects.

/clear local returns Clear the list of pending local returns and release operation objects.
/cancel report timer Cancel the periodic status-report timer, if active.
/reset service parameters Reset the service parameters to the initial values. Resetting of

service parameters must be checked individually for each
parameter. Depending on the service type some parameters may
have to be reset to the initial values, while others must keep their
current values.

/start release timer Start the release timer.
/cancel release timer Cancel the release timer, if active.
/create new buffer Create a new transfer buffer.
/append PDU Append the PDU to the transfer buffer.
/prepend notification Prepend the SYNC-NOTIFY invocation, indicating ‘data discarded

due to excessive backlog’, to the transfer buffer.
/discard buffer Discard transfer buffer and all contained PDUs.
/suspend data transfer Request the application to suspend data transfer.

CCSDS 914.0-M-1 Page 4-28 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.3.3.3.2 Compound Actions

/ABORT(diagnostic) is defined as

^PIF.PeerAbort(diagnostic)
^AIF.PeerAbort(diagnostic)
/CLEANUP

/CLEANUP is defined as

/clear remote returns
/clear local returns
/cancel release timer
/cancel report timer
/discard buffer
/set data transfer suspended = FALSE
/set buffer queued = FALSE
/reset service parameters

/BUFFER DATA is defined as

IF online and buffer empty THEN
 /start release timer
END IF
/append PDU
IF buffer full THEN
 IF buffer queued THEN
 IF timely online THEN
 ^PIF.DiscardBuffer
 IF buffer discarded THEN
 /prepend notification
 END IF
 ^PIF.TransferBuffer
 IF not buffer transmitted THEN
 /set buffer queued = TRUE
 END IF
 /cancel release timer
 ELSE
 IF complete online THEN
 /cancel release timer
 END IF
 /set data transfer suspended = TRUE
 /suspend data transfer
 END IF
 ELSE
 IF online THEN

CCSDS 914.0-M-1 Page 4-29 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

 /cancel release timer
 END IF
 ^PIF.TransferBuffer
 IF not buffer transmitted THEN
 /set buffer queued = TRUE
 END IF
 END IF
 /create new buffer
END IF

NOTE – Processing as specified here, uses a single transfer buffer. Multiple buffers can
be used by an implementation to increase performance.

/PROCESS RELEASE TIMER is defined as

IF buffer queued THEN
 IF timely online THEN
 ^PIF.DiscardBuffer
 IF buffer discarded THEN
 /prepend notification
 END IF
 END IF
 IF complete online THEN
 /suspend data transfer
 END IF
END IF
^PIF.TransferBuffer
IF not buffer transmitted THEN
 /set buffer queued = TRUE
END IF
/create new buffer

/PROCESS PDU TRANSMITTED is defined as

/set buffer queued = FALSE
IF data transfer suspended THEN
 /set data transfer suspended = FALSE
 ^AIF.ResumeDataTransfer
END IF

/PROCESS STOP PDU is defined as

IF not buffer empty THEN
 IF online THEN
 /cancel release timer
 END IF
 IF timely online THEN

CCSDS 914.0-M-1 Page 4-30 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 4-31 October 2008

 IF buffer queued THEN
 ^PIF.DiscardBuffer
 IF buffer discarded THEN
 /prepend notification
 END IF
 END IF
 END IF
 ^PIF.TransferBuffer
 IF not buffer transmitted THEN
 /set buffer queued = TRUE
 END IF
END IF

/PROCESS EOD is defined as

/append PDU
IF online THEN
 /cancel release timer
END IF
IF timely online THEN
 IF buffer queued THEN
 ^PIF.DiscardBuffer
 IF buffer discarded THEN
 /prepend notification
 END IF
 END IF
END IF
^PIF.TransferBuffer
IF not buffer transmitted THEN
 /set buffer queued = TRUE
END IF
/create new buffer

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

4.5.3.3.4 Return Link State Table—Provider Side C
C

SD
S 914.0-M

-1
Page 4-32

O
ctober 2008

 1 UNBOUND 2 READY 3 ACTIVE

2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND

PIF:
StartInv

/reject(protocol err) ^AIF.StartInv
 2.2

/ABORT(protocol err)
 1.1

/reject(protocol error) /ABORT(protocol error)
 1.1

AIF:
StartRet

 /reject(protocol error) ^PIF.StartRet
[result = positive]
 /create new buffer
 3.1
[result = negative]
 2.1

 /reject(protocol error)

PIF:
StopInv

/reject(protocol err) /ABORT(protocol error)
 1.1

/reject(protocol error) ^AIF.StopInv
 3.2

/ABORT (protocol error)
 1.1

AIF:
StopRet

 /reject(protocol error) [result = positive]
 /PROCESS STOP PDU
 ^PIF.StopRet
 2.1
[result =negative]
 ^PIF.StopRet
 3.1

AIF:
TransferDataInv

 /reject(protocol error) [data transfer suspended]
 /reject
[not
data transfer suspended]
 /BUFFER DATA

/reject(stop pending)

AIF:
SyncNotifyInv

 /reject(protocol error) [data transfer suspended]
 reject(suspended)
 [not data transfer suspended]
 [end of data]
 /PROCESS EOD
 [not end of data]
 /BUFFER DATA

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

C
C

SD
S 914.0-M

-1
Page 4-33

O
ctober 2008

 1 UNBOUND 2 READY 3 ACTIVE

2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND

INT:
Release timer
expired

 N/A /PROCESS RELEASE TIMER

PIF:
PDUTransmitted

/reject /PROCESS PDU TRANSMITTED

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.3.4 Forward Link SLE Services

4.5.3.4.1 Events

4.5.3.4.1.1 Events received from the Application Interface (ISLE_ServiceInitiate)

StartRet call to InitiateOpReturn() with a START operation
StopRet call to InitiateOpReturn() with a STOP operation
TransferDataRet call to InitiateOpReturn() with a TRANSFER-DATA

operation
InvokeDirectiveRet call to InitiateOpReturn() with an INVOKE-DIRECTIVE

operation
AsyncNotifyInv call to InitiateOpInvoke() with an ASYNC-NOTIFY

operation
ThrowEventRet call to InitiateOpInvoke() with a THROW-EVENT

operation

4.5.3.4.1.2 Events sent to the Application Interface (ISLE_ServiceInform)

StartInv call to InformOpInvoke() with a START operation
StopInv call to InformOpInvoke() with a STOP operation
TransferDataInv call to InformOpInvoke() with a TRANSFER-DATA

operation
InvokeDirectiveInv call to InformOpInvoke() with an INVOKE-DIRECTIVE

operation
ThrowEventInv call to InformOpInvoke() with a THROW-EVENT operation
PeerAbortInv call to InformOpInvoke() with a PEER-ABORT operation

4.5.3.4.1.3 Events received from the Proxy Interface (ISLE_SrvProxyInform)

StartInv call to InformOpInvoke() with a START operation
StopInv call to InformOpInvoke() with a STOP operation
TransferDataInv call to InformOpInvoke() with a TRANSFER-DATA

operation
InvokeDirectiveInv call to InformOpInvoke() with an INVOKE-DIRECTIVE

operation
ThrowEventInv call to InformOpInvoke() with a THROW-EVENT operation

CCSDS 914.0-M-1 Page 4-34 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.3.4.1.4 Events sent to the Proxy Interface (ISLE_SrvProxyInitiate)

StartRet call to InitiateOpReturn() with a START operation
StopRet call to InitiateOpReturn() with a STOP operation
TransferDataRet call to InitiateOpReturn() with a TRANSFER-DATA

operation
InvokeDirectiveRet call to InitiateOpReturn() with a INVOKE-DIRECTIVE

operation
AsyncNotifyInv call to InitiateOpInvoke() with an ASYNC-NOTIFY

operation
ThrowEventRet call to InitiateOpReturn() with a THROW-EVENT

operation
PeerAbortInv call to InitiateOpInvoke() with a PEER-ABORT operation

4.5.3.4.2 Predicates

result = positive The result parameter in the PDU indicates ‘positive result’.
result = negative The result parameter in the PDU indicates ‘negative result’.

4.5.3.4.3 Actions

4.5.3.4.3.1 Discrete Actions

/reject(reason) Reject the event by returning an error code to the function invoking
the event.

/clear remote returns Cancel return timers for all pending remote returns, clear the list of
pending remote returns, and release the operation objects.

/clear local returns Clear the list of pending local returns and release the operation
objects.

/cancel report timer Cancel the periodic status-report timer, if active.
/reset service parameters Reset the service parameters to the initial values. Resetting of

service parameters must be checked individually for each
parameter. Depending on the service type some parameters may
have to be reset to the initial values, while others must keep their
current values.

4.5.3.4.3.2 Compound Actions

/ABORT(diagnostic) is defined as

^PIF.PeerAbort(diagnostic)
^AIF.PeerAbort(diagnostic)
/CLEANUP

CCSDS 914.0-M-1 Page 4-35 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 4-36 October 2008

/CLEANUP is defined as

/clear remote returns
/clear local returns
/cancel report timer
/reset service parameters

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

4.5.3.4.4 Forward Link State Table—Provider Side C
C

SD
S 914.0-M

-1
Page 4-37

O
ctober 2008

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

 1 UNBOUND 2 READY 3 ACTIVE

2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND

PIF:
StartInv

/reject(protocol error) ^AIF.StartInv
 2.2

/ABORT(protocol error)
 1.1

/reject(protocol error) ABORT(protocol error)
 1.1

AIF:
StartRet

/reject(protocol error) ^PIF.StartRet
[result = positive]
 3.1
[result = negative]
 2.1

 /reject(protocol error)

PIF:
StopInv

/reject(protocol error) /ABORT(protocol error)
 1.1

/reject(protocol error) ^AIF.StopInv
 3.2

/ABORT (protocol error)
 1.1

AIF:
StopRet

 /reject(protocol error) ^PIF.StopRet
[result = positive]
 2.1
[result = negative]
 3.1

PIF:
TransferDataInv

/reject(protocol error) /ABORT(protocol error)
 1.1

/reject(protocol error) ^AIF.TransferDataInv
 3.1

/ABORT(protocol error)
 1.1

AIF:
TransferDataRet

/reject(protocol error) ^PIF.TransferDataRet

PIF:
InvokeDirectiveInv

/reject(protocol error) /ABORT(protocol error)
 1.1

/reject(protocol error) ^AIF.InvokeDirectiveInv /ABORT (protocol error)
 1.1

AIF:
InvokeDirectiveRet

/reject(protocol error) ^PIF.InvokeDirectiveRet

AIF:
AsyncNotifyInv

/reject(protocol error) ^PIF.AsyncNotifyInv /reject(unbind pend) ^PIF.AsyncNotifyInv

PIF:
ThrowEventInv

/reject(protocol error) ^AIF.ThrowEventInv {1} /reject(protocol error) ^AIF.ThrowEventInv {1}

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

C
C

SD
S 914.0-M

-1
Page 4-38

O
ctober 2008

 1 UNBOUND 2 READY 3 ACTIVE

2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND

AIF:
ThrowEventRet

/reject(protocol error) ^PIF.ThrowEventRet {1} /reject(unbind pend) ^PIF.ThrowEventRet {1}

NOTE – The operation THROW-EVENT is defined in the transfer services but the associated management support is not yet in
place. As long as this situation exists, applications should respond with a return holding a negative result and the
diagnostic ‘other reason’.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.4 USER SIDE STATE TABLES

4.5.4.1 States

All user side state tables use the same set of states. The main states are identical to those
defined in the CCSDS Recommended Standards for SLE transfer services. Sub-states have
been added to allow presentation of further details related to the interactions with the
application and the proxy. The states are defined as follows.

UNBOUND:UNBOUND The user is not bound to the service instance.

UNBOUND:BIND PEND A BIND invocation has been issued, the service provider has
not yet responded.

READY:BOUND A BIND return with a positive result has been received and no
START invocation has been sent, or a STOP operation has
been completed.

READY:START PEND A START invocation has been issued, the service provider has
not yet responded.

READY:UNBIND PEND An UNBIND invocation has been issued, the service provider
has not yet responded.

ACTIVE:ACTIVE A START return with a positive result has been received.

ACTIVE:STOP PEND A STOP invocation has been issued, the service provider has
not yet responded.

4.5.4.2 Common State Table—User Initiated Binding

4.5.4.2.1 Events

4.5.4.2.1.1 Events received from the Application Interface
(ISLE_ServiceInitiate)

BindInv call to InitiateOpInvoke() with a BIND operation
UnbindInv call to InitiateOpInvoke() with a UNBIND operation
GetPrmInv call to InitiateOpInvoke() with a GET-PARAMETER

operation
ScheduleStatRepInv call to InitiateOpInvoke() with a SCHEDULE-STATUS-

REPORT operation
PeerAbortInv call to InitiateOpInvoke() with a PEER-ABORT operation

CCSDS 914.0-M-1 Page 4-39 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.4.2.1.2 Events sent to the Application Interface (ISLE_ServiceInform)

BindRet call to InformOpReturn() with a BIND operation
UnbindRet call to InformOpReturn() with a UNBIND operation
GetPrmRet call to InformOpReturn() with a GET-PARAMETER

operation

ScheduleStatRepRet call to InformOpReturn() with a SCHEDULE-STATUS-
REPORT operation

StatusReportInv call to InformOpInvoke() with a STATUS-REPORT operation
PeerAbortInv call to InformOpInvoke() with a PEER-ABORT operation
ProtocolAbort call to ProtocolAbort()

4.5.4.2.1.3 Events received from the Proxy Interface (ISLE_SrvProxyInform)

BindRet call to InformOpReturn() with a BIND operation
UnbindRet call to InformOpReturn() with a UNBIND operation
GetPrmRet call to InformOpReturn() with a GET-PARAMETER

operation
ScheduleStatRepRet call to InformOpReturn() with a SCHEDULE-STATUS-

REPORT operation
StatusReportInv call to InformOpInvoke() with a STATUS-REPORT operation
PeerAbortInv call to InformOpInvoke() with a PEER-ABORT operation
ProtocolAbort call to ProtocolAbort()

4.5.4.2.1.4 Events sent to the Proxy Interface (ISLE_SrvProxyInitiate)

BindInv call to InitiateOpInvoke() with a BIND operation
UnbindInv call to InitiateOpInvoke() with a UNBIND operation
GetPrmInv call to InitiateOpInvoke() with a GET-PARAMETER

operation
ScheduleStatRepInv call to InitiateOpInvoke() with a SCHEDULE-STATUS-

REPORT operation
PeerAbortInv call to InitiateOpInvoke() with a PEER-ABORT operation

4.5.4.2.1.5 Internal Events

Peer Abort peer abort event generated by a pre-processing function or a post-
processing function

Return timeout the time to wait for a specific return-PDU has elapsed

CCSDS 914.0-M-1 Page 4-40 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 4-41 October 2008

4.5.4.2.2 Predicates

result = positive The result parameter in the PDU indicates ‘positive result’.
result = negative The result parameter in the PDU indicates ‘negative result’.

4.5.4.2.3 Actions

4.5.4.2.3.1 Discrete Actions

/reject(reason) Reject the event by returning an error code to the function invoking
the event.

/clear local returns Clear the list of pending local returns and release operation objects.

4.5.4.2.3.2 Compound Actions

/ABORT

Abort processing is forward/return-service specific, see /ABORT in 4.5.4.3 and 4.5.4.4.

/CLEANUP
Cleanup processing is forward/return-service specific, see /CLEANUP in 4.5.4.3 and 4.5.4.4.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

4.5.4.2.4 Common State Table—User Side C
C

SD
S 914.0-M

-1
Page 4-42

O
ctober 2008

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

 1 UNBOUND 2 READY 3 ACTIVE

1.1 UNBOUND 1.2 BIND PEND 2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND

AIF:
BindInv

^PIF.BindInv
 1.2

 /reject(protocol error)

PIF:
BindRet

/reject(protocol error) ^AIF.BindRet
[result = positive]
 2.1
[result = negative]
 1.1

 /reject(protocol error)

AIF:
UnbindInv

 /reject(protocol error) ^PIF.UnbindInv
/clear local returns

 2.3

 /reject(protocol error)

PIF:
UnbindRet

 /reject(protocol error) ^AIF.UnbindRet
/CLEANUP

 1.1

/reject(protocol error)

AIF:
GetPrmInv

 /reject(protocol error) ^PIF.GetPrmInv /reject(protocol err) ^PIF.GetPrmInv

PIF:
GetPrmRet

 /reject(protocol error) ^AIF.GetPrmRet {1}

AIF:
ScheduleStatRepInv

 reject(protocol error) ^PIF.ScheduleStatRepInv /reject(protocol err) ^PIF.ScheduleStatRepInv

PIF:
ScheduleStatRepRet

 /reject(protocol error) ^AIF.ScheduleStatRepRet {1}

PIF:
StatusReportInv

 /reject(protocol error) ^AIF.StatusReportInv {2}

PIF:
PeerAbortInv

/reject(protocol error) ^AIF.PeerAbortInv
 /CLEANUP
 1.1

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

C
C

SD
S 914.0-M

-1
Page 4-43

O
ctober 2008

 1 UNBOUND 2 READY 3 ACTIVE

1.1 UNBOUND 1.2 BIND PEND 2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND

AIF:
PeerAbortInv

/reject(protocol error) ^PIF.PeerAbortInv
 /CLEANUP
 1.1

PIF:
ProtocolAbort

/reject(protocol error) ^AIF.ProtoclAbortInv
 /CLEANUP
 1.1

INT:
Return timeout

N/A /ABORT (return timeout)
 1.1

INT:
PeerAbort(reason)

N/A /ABORT(reason)
 1.1

NOTES

1 In the state UNBIND-PENDING, returns can still be received from the peer.

2 In the state UNBIND-PENDING, no further invocations should be sent by the peer. However, the peer may not yet have seen
the UNBIND invocation. Therefore all invocations are passed to the application. The application should no longer respond.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.4.3 Return Link SLE Services

4.5.4.3.1 Events

4.5.4.3.1.1 Events received from the Application Interface
(ISLE_ServiceInitiate)

StartInv call to InitiateOpInvoke() with a START operation
StopInv call to InitiateOpInvoke() with a STOP operation

4.5.4.3.1.2 Events sent to the Application Interface (ISLE_ServiceInform)

StartRet call to InformOpReturn() with a START operation
StopRet call to InformOpReturn() with a STOP operation
TransferDataInv call to InformOpInvoke() with a TRANSFER-DATA

operation
SyncNotifyInv call to InformOpInvoke() with a SYNC-NOTIFY operation
PeerAbortInv call to InformOpInvoke() with a PEER-ABORT operation

4.5.4.3.1.3 Events received from the Proxy Interface (ISLE_SrvProxyInform)

StartRet call to InformOpReturn() with a START operation
StopRet call to InformOpReturn() with a STOP operation
TransferBufferInv call to InformOpInvoke() with a TRANSFER-BUFFER

operation.

4.5.4.3.1.4 Events sent to the Proxy Interface (ISLE_SrvProxyInitiate)

StartInv call to InitiateOpInvoke() with a START operation
StopInv call to InitiateOpInvoke() with a STOP operation
PeerAbortInv call to InitiateOpInvoke() with a PEER-ABORT operation

4.5.4.3.2 Predicates

result = positive The result parameter in the PDU indicates ‘positive result’.
result = negative The result parameter in the PDU indicates ‘negative result’.
buffer empty The transfer buffer is empty.
pdu = data The PDU extracted from the transfer buffer is a TRANSFER-

DATA invocation.
pdu = notification The PDU extracted from the transfer buffer is a SYNC-NOTIFY

invocation.

CCSDS 914.0-M-1 Page 4-44 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 4-45 October 2008

4.5.4.3.3 Actions

4.5.4.3.3.1 Discrete Actions

/reject(reason) Reject the event by returning an error code to the function invoking
the event.

/extract pdu Extract (and remove) the PDU at the beginning of the transfer
buffer.

/clear remote returns Cancel return timers for all pending remote returns, clear the list of
pending remote returns, and release operation objects.

/clear local returns Clear the list of pending local returns and release operation objects.

4.5.4.3.3.2 Compound Actions

/ABORT(diagnostic) is defined as

^PIF.PeerAbort(diagnostic)
^AIF.PeerAbort(diagnostic)
/CLEANUP

/CLEANUP is defined as

/clear remote returns
/clear local returns

/PROCESS BUFFER is defined as

WHILE not buffer empty DO
 /extract pdu
 IF pdu = data THEN
 ^AIF.TransferDataInv
 ELSE
 IF pdu = notification THEN
 ^AIF.SyncNotifyInv
 ELSE
 /ABORT(protocol error)
 END IF
 END IF
END WHILE

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

4.5.4.3.4 Return Link State Table—User Side C
C

SD
S 914.0-M

-1
Page 4-46

O
ctober 2008

 1 UNBOUND 2 READY 3 ACTIVE

2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND

AIF:
StartInv

/reject(protocol error) ^PIF.StartInv
 2.2

 /reject(protocol error)

PIF:
StartRet

/reject(protocol error) /ABORT(protocol error)
 1.1

^AIF.StartRet
[result = positive]
 3.1
[result = negative]
 2.1

 /ABORT(protocol error)
 1.1

AIF:
StopInv

/reject(protocol error) ^PIF.StopInv
 3.2

/reject(protocol error)

PIF:
StopRet

/reject(protocol error) /ABORT(protocol error)
 1.1

^AIF.StopRet
[result = positive]
 2.1
[result = negative]
 3.1

PIF:
TransferBufferInv

/reject(protocol error) /ABORT(protocol error)
 1.1

 /PROCESS BUFFER

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.4.4 Forward Link SLE Services

4.5.4.4.1 Events

4.5.4.4.1.1 Events received from the Application Interface
(ISLE_ServiceInitiate)

StartInv call to InitiateOpInvoke() with a START operation
StopInv call to InitiateOpInvoke() with a STOP operation
TransferDataInv call to InitiateOpInvoke() with a TRANSFER-DATA

operation
InvokeDirectiveInv call to InitiateOpInvoke() with an INVOKE-DIRECTIVE

operation
ThrowEventInv call to InitiateOpInvoke() with a THROW-EVENT

operation

4.5.4.4.1.2 Events sent to the Application Interface (ISLE_ServiceInform)

StartRet call to InformOpReturn() with a START operation
StopRet call to InformOpReturn() with a STOP operation
TransferDataRet call to InformOpReturn() with a TRANSFER-DATA

operation
InvokeDirectiveRet call to InformOpReturn() with an INVOKE-DIRECTIVE

operation
ResumeDataTransfer call to ResumeDataTransfer()
AsyncNotifyInv call to InformOpInvoke() with an ASYNC-NOTIFY operation
ThrowEventRet call to InformOpReturn() with a THROW-EVENT operation
PeerAbortInv call to InformOpInvoke() with a PEER-ABORT operation

4.5.4.4.1.3 Events received from the Proxy Interface (ISLE_SrvProxyInform)

StartRet call to InformOpReturn() with a START operation
StopRet call to InformOpReturn() with a STOP operation
TransferDataRet call to InformOpReturn() with a TRANSFER-DATA

operation
InvokeDirectiveRet call to InformOpReturn() with an INVOKE-DIRECTIVE

operation
AsyncNotifyInv call to InformOpInvoke() with an ASYNC-NOTIFY operation
ThrowEventRet call to InformOpReturn() with a THROW-EVENT operation
PDUTransmitted call to PDUTransmitted()

CCSDS 914.0-M-1 Page 4-47 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.5.4.4.1.4 Events sent to the Proxy Interface (ISLE_SrvProxyInitiate)

StartInv call to InitiateOpInvoke() with a START operation
StopInv call to InitiateOpInvoke() with a STOP operation
TransferDataInv call to InitiateOpInvoke() with a TRANSFER-DATA

operation
InvokeDirectiveInv call to InitiateOpInvoke() with an INVOKE-DIRECTIVE

operation
ThrowEventInv call to InitiateOpInvoke() with a THROW-EVENT

operation
PeerAbortInv call to InitiateOpInvoke() with a PEER-ABORT operation

4.5.4.4.2 Predicates

result = positive The result parameter in the PDU indicates ‘positive result’.
result = negative The result parameter in the PDU indicates ‘negative result’.
data transmitted The TRANSFER-DATA invocation passed to the proxy could be

transmitted immediately as indicated by the return code of the
function.

data queued A TRANSFER-DATA invocation has been passed to the proxy for
transfer and the PDU Transmitted event has not yet been received
for that buffer.

4.5.4.4.3 Actions

4.5.4.4.3.1 Discrete Actions

/reject(reason) Reject the event by returning an error code to the function invoking
the event.

/clear remote returns Cancel return timers for all pending remote returns, clear the list of
pending remote returns, and release operation objects.

/clear local returns Clear the list of pending local returns and release operation objects.
/suspend data transfer Request the application to suspend data transfer, by returning the

appropriate code from the function transmitting the event.

CCSDS 914.0-M-1 Page 4-48 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page 4-49 October 2008

4.5.4.4.3.2 Compound Actions

/ABORT(diagnostic) is defined as

^PIF.PeerAbort(diagnostic)
^AIF.PeerAbort(diagnostic)
/CLEANUP

/CLEANUP is defined as

/clear remote returns
/clear local returns
/set data queued = FALSE

/PROCESS TD INV is defined as

IF data queued THEN
 /reject(transfer suspended)
ELSE
 ^PIF.TransferDataInv
 IF not data transmitted THEN
 /set data queued = TRUE
 /suspend data transfer
 END IF
END IF

NOTE – Processing as specified here, applies to a single outstanding TRANSFER DATA
invocation. Multiple outstanding TRANSFER DATA invocations might be used
by an implementation to increase performance.

/PROCESS PDU TRANSMITTED is defined as

IF data queued THEN
 /set data queued = FALSE
 ^AIF.ResumeDataTransfer
END IF

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

4.5.4.4.4 Forward Link State Table—User Side C
C

SD
S 914.0-M

-1
Page 4-50

O
ctober 2008

 1 UNBOUND 2 READY 3 ACTIVE

2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND

AIF:
StartInv

/reject(protocol error) ^PIF.StartInv
 2.2

 /reject(protocol error)

PIF:
StartRet

/reject(protocol error) /ABORT (protocol error)
 1.1

^AIF.StartRet
[result = positive]
 3.1
[result = negative]
 2.1

 /ABORT(protocol error)
 1.1

AIF:
StopInv

 /reject(protocol error) ^PIF.StopInv
 3.2

/reject(protocol error)

PIF:
StopRet

/reject(protocol error) /ABORT(protocol error)
 1.1

^AIF.StopRet
[result = positive]
 2.1
[result = negative]
 3.1

AIF:
TransferDataInv

 /reject(protocol error) /PROCESS TD INV /reject(protocol error)

PIF:
TransferDataRet

/reject(protocol error) /ABORT(protocol error)
 1.1

 ^AIF.TransferDataRet

AIF:
InvokeDirectiveInv

 /reject(protocol error) ^PIF.InvokeDirectiveInv /reject(protocol error)

PIF:
InvokeDirectiveRet

/reject(protocol error) /ABORT(protocol error)
 1.1

 ^AIF.InvokeDirectiveRet

PIF:
PDU transmitted

 /reject /PROCESS PDU TRANSMITTED

PIF:
AsyncNotifyInv

/reject(protocol error) ^AIF.AsyncNotifyInv {2}

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

A
PI FO

R
 SLE TR

A
N

SFER
 SER

V
IC

ES—
C

O
R

E SPEC
IFIC

A
TIO

N

C
C

SD
S 914.0-M

-1
Page 4-51

O
ctober 2008

 1 UNBOUND 2 READY 3 ACTIVE

2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND

AIF:
ThrowEventInv

/reject(protocol error) ^PIF.ThrowEventInv /reject(protocol err) ^PIF.ThrowEventInv

PIF:
ThrowEventRet

/reject(protocol error) ^AIF.ThrowEventRet {1}

NOTES

1 In the state UNBIND-PENDING, returns can still be received from the peer.

2 In the state UNBIND-PENDING, no further invocations should be sent by the peer. However, the peer may not yet have seen
the UNBIND invocation. Therefore all invocations are passed to the application. The application should no longer respond.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX A

SPECIFICATION OF COMMON INTERFACES

(Normative)

A1 INTRODUCTION

This annex contains the C++ definition of interfaces that are common for all SLE service
types and of supporting types required by these interfaces. Service-type specific interfaces
are defined by the relevant supplemental Recommended Practice documents for service-
specific APIs.

The interface specifications are structured according to the components that must provide the
implementation:

a) Interfaces implemented by the component ‘SLE Utilities’ are defined in subsection
A4.

b) Interfaces implemented by the component ‘SLE Operations’ are defined in subsection
A5.

c) Interfaces implemented by the component ‘API Proxy’ are defined in subsection A7.

d) Interfaces implemented by the component ‘API Service Element’ are defined in
subsection A8.

e) Interfaces that must be provided by the SLE Application are defined in subsection
A9.

Interfaces that must be implemented by more than one component are defined in subsection
A6. Interfaces defined in that subsection must be implemented by the component ‘API
Proxy’ and ‘API Service Element’.

Subsection A3 defines types used throughout the remaining subsections.

The conventions used for the specification are explained in subsection A2.

The specifications of this annex are complemented by the definition of the ‘Simple
Component Model’ in annex D.

CCSDS 914.0-M-1 Page A-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A2 CONVENTIONS

A2.1 OVERVIEW

The specification of the interfaces follows the design patterns and conventions described for
the ‘Simple Component Model’ in annex D. In order to be consistent with those elements
adopted from COM, the coding style has been also adopted from COM to a large extent.

A2.2 INTERFACES

The ‘keyword’ interface is defined by

#define interface struct

in the file SLE_SCM.H described in annex D. All interfaces are directly or indirectly
derived from the interface IUnknown, which is also defined in SLE_SCM.H.

A2.3 NAMING CONVENTIONS

Names for the following items start with uppercase letters:

a) All types, i.e.:

1) Interfaces (e.g., ISLE_Bind);

2) enumeration types (e.g., SLE_ParameterName);

3) other types declared by typedef (e.g., SLE_InvokeId);

b) Method names (e.g., InitiateOpInvoke()).

Names for the following items start with lowercase letters:

a) variables;

b) arguments of methods;

c) enumeration labels.

All names at global scope in this specification use the prefix ‘SLE’ (or ‘sle’ when the
named item is supposed to start with a lowercase letter).

All interfaces start with a capital ‘I’, such that interface names are prefixed with ‘ISLE’.

NOTE – The interface IMalloc defined in A4.3 is the only exception to this rule because
of the considerations presented in A2.6.

CCSDS 914.0-M-1 Page A-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Because enumeration labels are defined at global scope, the prefix is extended to include an
abbreviation for the enumeration type. For instance, all labels of the enumeration type
SLE_ParameterName are prefixed by ‘slePN’.

An underscore character is used to separate the prefix from the name. Within the name itself
upper and lower case is used to improve readability.

A2.4 ACCESS TO OBJECT ATTRIBUTES

Methods that only provide read access to an attribute of an object, are named using the prefix
‘Get’. Methods that set the attribute are named using the prefix ‘Set’. An underscore
character is used to separate the prefix from the name. For example the method to read the
service type is called Get_ServiceType() and the method to set the service type is
called Set_ServiceType().

When the attribute type is not a basic type (e.g., a character string) the following conventions
are applied:

a) If it can be assumed that the implementation stores the attribute in the format in
which it is delivered, the return value is defined to be const. In these cases, the
client must copy the value if it wants to modify it.

b) If the object implementation might have to derive the value a pointer to a not constant
object is returned. In these cases the client must delete the returned value.

c) In order to optimize performance, an additional retrieval method, prefixed by
‘Remove_’ is defined for attributes that might become large (e.g., the space link
data). These methods return a pointer to the internal representation and remove that
pointer from the object itself. The client calling that method must make sure the
memory is released when the data are no longer needed.

d) For setting of attributes a pointer or reference to a const object is generally used.
For potentially larger arguments, an additional method (prefixed by ‘Put’) is defined
which passes a pointer to a not constant object. In these cases the implementation is
expected to delete the data passed with the argument, when it no longer needs it.

A2.5 CONDITIONAL AND OPTIONAL ATTRIBUTES

Attributes of operation objects can be:

a) conditional, i.e., their value is only defined when another attribute has a certain value;

b) optional, i.e., the value may or may not be defined.

For access to conditional attributes, checking of the condition is considered a precondition;
i.e., the result of calling the access method is undefined when the attribute is not present.

CCSDS 914.0-M-1 Page A-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

For access to optional attributes, different approaches are used, depending on the type of the
attribute:

a) For enumeration types, an additional enumeration value ‘undefined’ is added to the
type declaration. This value is returned if the attribute is currently undefined.

b) Object types or composite C++ types, such as arrays or structures are returned via a
pointer to a constant object, instead of using a reference to a constant object. If an
optional attribute is undefined, the access method returns a NULL pointer.

c) For simple types the following cases are distinguished:

1) if the valid range of attribute values does not include the complete range covered
by the type, a special value is selected to indicate that the attribute is not defined;

2) in other cases, a special method is provided to check whether the attribute is
defined or not.

In cases where presence or absence of an attribute is identified by a special method, absence
of an operation object attribute shall be marked as ‘(not used)’ in the tables specifying the
initial values of operation object attributes.

A2.6 MEMORY MANAGEMENT

Non-object data structures, to which pointers are passed across component boundaries, might
be created by one component or the application and released by another component or the
application. Use of a consistent memory management scheme by all involved parties is of
prime importance to ensure integrity of process memory.

Therefore, this Recommended Practice defines a specific memory management interface
IMalloc, which must be used by all API components and by the application when creating
or deleting data structures to which pointers are passed across component boundaries. The
interface IMalloc is implemented by the component SLE Utilities. A pointer to the
interface can be obtained using the method CreateMemoryManager() of the Utility
Factory.

NOTES

1 Memory management for objects created by API components is controlled by the
reference counting scheme for interfaces described in annex D. This scheme implies
that the memory for such objects is always allocated and released by the same
component. Therefore, the means by which memory is allocated and released for
such objects is considered a local implementation issue and not prescribed by this
Recommended Practice. The same applies to interfaces, which are implemented by
objects within the application software.

CCSDS 914.0-M-1 Page A-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2 Data structures, which might be created by one component and deleted by another
component, are generally strings, arrays or structures passed by Put_xxx() or
Remove_xxx() methods.

3 For data that are never passed across component boundaries and for data that are
always passed by value, memory management is considered a local implementation
issue and not prescribed by this Recommended Practice.

4 As specified in A2.4, this Recommended Practice applies the convention that data,
which are passed across component boundaries using a reference to a constant data
structure or a pointer to a constant data structure, must not be deleted by the calling
software. Therefore, use of the memory manager interface IMalloc is not
mandated if a data structure is only passed across component boundaries in these
ways.

5 The specification of the interface IMalloc defines a subset of the COM interface
IMalloc, in order to enable use of the SLE API in a COM environment. Further
details concerning the use of this interface and the implementation of the interface in
other environments can be found in A4.3 and annex D.

A2.7 INTERFACE IDENTIFIERS

Interface identifiers are displayed in the format as defined for the COM registry. In addition,
each interface contains a macro that allows pre-setting of the structure GUID (see annex D).

The name of the macro is constructed as IID_<interface-name>_DEF Guidelines for
use of this macro can be found in annex D.

A2.8 TYPE DEFINITIONS

Types other than interfaces are defined at global scope. They are grouped into two files,
namely:

a) SLE_Types.h for types derived from the CCSDS Recommended Standards
for SLE transfer services;

b) SLE_APITypes.h for types specified by the API.

All types are defined in a manner that is compatible with the C language in order to simplify
mapping of the interfaces to C. For enumeration types derived from the CCSDS
Recommended Standards for SLE transfer services the numbers assigned to the labels
correspond to the integer values used in those specifications.

CCSDS 914.0-M-1 Page A-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A2.9 RESULT CODES

This specification adopts the scheme to define result codes from COM. All values that can
be used for the variable HRESULT are defined in annex B and in the file SLE_Result.h.

A2.10 FUNCTION OVERLOADING

In order to simplify mapping to the C language, this specification does not use overloaded
functions except for overloaded operators. Overloaded operators can be mapped to function
names in C.

A2.11 OBJECT CREATION METHODS

The signature of methods creating and returning objects follows the COM conventions:

a) the GUID of the interface is passed as an input argument (and checked by the
implementation);

b) a pointer to the interface of the object is passed as an output argument of the type
void**;

c) the method returns a result code.

A2.12 FILES

This specification defines header files that contain interface declarations and type definitions.
Obviously, these definitions are not mandatory, but present a recommendation. A set of the
files defined in this specification is available from the same source as the specification itself.

A3 TYPE DEFINITIONS

A3.1 SLE TYPES

A3.1.1 General

File SLE_Types.h

The following basic types have been derived from the ASN.1 modules in the CCSDS
Recommended Standards for SLE transfer services. The source ASN.1 type is indicated in
brackets. For all enumeration types a special value ‘invalid’ is defined, which is returned if
the associated value in the operation object has not yet been set, or is not applicable in case
of a choice.

The type definitions in this specification cover all those types that are common for all service
types or for a subset of service types. These types are defined in the ASN.1 modules:

a) CCSDS-SLE-TRANSFER-SERVICE-COMMON-TYPES;

CCSDS 914.0-M-1 Page A-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) CCSDS-SLE-TRANSFER-SERVICE-BIND-TYPES; and

c) CCSDS-SLE-TRANSFER-COMMON-PDUS.

The definition of the SLE service parameters (ParameterName) has been excluded
because extensions are expected when further SLE services are added. Service parameters
are defined in the relevant supplemental Recommended Practice documents for service-
specific APIs.

A3.1.2 Auxiliary Types

Size of Data
#ifndef _SIZE_T
#define _SIZE_T
typedef unsigned int size_t;
#endif

On POSIX systems, size_t is defined by standard header files; redefinition must be
prevented by conditional compilation.

Definition of an Octet
typedef unsigned char SLE_Octet;

In order to distinguish between character strings and sequences of octets (bytes) frequently
used by SLE Service specifications, the API defines a special type for an octet. The type
char* always refers to a zero terminated string of characters.

Yes/No Value
typedef enum SLE_YesNo
{
 sleYN_No = 0,
 sleYN_Yes = 1,
 sleYN_invalid = -1
} SLE_YesNo;

The type describes a Boolean value, which might not be available at certain times.

A3.1.3 Types derived from CCSDS-SLE-TRANSFER-SERVICE-COMMON-TYPES
Delivery Mode [DeliveryMode]
typedef enum SLE_DeliveryMode
{
 sleDM_rtnTimelyOnline = 0,
 sleDM_rtnCompleteOnline = 1,
 sleDM_rtnOffline = 2,
 sleDM_fwdOnline = 3,
 sleDM_fwdOffline = 4,
 sleDM_invalid = -1

CCSDS 914.0-M-1 Page A-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

} SLE_DeliveryMode;

Common Diagnostics [Diagnostics]
typedef enum SLE_Diagnostics
{
 sleD_duplicateInvokeId = 100,
 sleD_otherReason = 127,
 sleD_invalid = -1
} SLE_Diagnostics;

Forward Data Unit Status [ForwardDuStatus]
typedef enum SLE_ForwardDuStatus
{
 sleFDS_radiated = 0,
 sleFDS_expired = 1,
 sleFDS_interrupted = 2,
 sleFDS_acknowledged = 3,
 sleFDS_productionStarted = 4,
 sleFDS_productionNotStarted = 5,
 sleFDS_unsupportedTransmissionMode = 6,
 sleFDS_invalid = -1
} SLE_ForwardDuStatus;

Invocation Identifier [InvokeId]
typedef unsigned short SLE_InvokeId;

Generation of Notifications [SlduStatusNotification]
typedef enum SLE_SlduStatusNotification
{
 sleSN_produceNotification = 0,
 sleSN_doNotProduceNotification = 1,
 sleSN_invalid = -1
} SLE_SlduStatusNotification;

A3.1.4 Types derived from CCSDS-SLE-TRANSFER-SERVICE-BIND-TYPES

Version Number [VersionNumber]
typedef unsigned short SLE_VersionNumber;

Duration [Duration]
typedef unsigned long SLE_Duration; /* in microseconds */

SLE Service Type [ApplicationIdentifier]
typedef enum SLE_ApplicationIdentifier
{
 sleAI_rtnAllFrames = 0,

CCSDS 914.0-M-1 Page A-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

 sleAI_rtnInsert = 1,
 sleAI_rtnChFrames = 2,
 sleAI_rtnChFsh = 3,
 sleAI_rtnChOcf = 4,
 sleAI_rtnBitstr = 5,
 sleAI_rtnSpacePkt = 6,
 sleAI_fwdAosSpacePkt = 7,
 sleAI_fwdAosVca = 8,
 sleAI_fwdBitstr = 9,
 sleAI_fwdProtoVcdu = 10,
 sleAI_fwdInsert = 11,
 sleAI_fwdVcdu = 12,
 sleAI_fwdTcSpacePkt = 13,
 sleAI_fwdTcVca = 14,
 sleAI_fwdTcFrame = 15,
 sleAI_fwdCltu = 16,
 sleAI_invalid = -1
} SLE_ApplicationIdentifier;

BIND Diagnostic [BindDiagnostic]
typedef enum SLE_BindDiagnostic
{
 sleBD_accessDenied = 0,
 sleBD_serviceTypeNotSupported = 1,
 sleBD_versionNotSupported = 2,
 sleBD_noSuchServiceInstance = 3,
 sleBD_alreadyBound = 4,
 sleBD_siNotAccessibleToThisInitiator = 5,
 sleBD_inconsistentServiceType = 6,
 sleBD_invalidTime = 7,
 sleBD_outOfService = 8,
 sleBD_otherReason = 127,
 sleBD_invalid = -1
} SLE_BindDiagnostic;

UNBIND Reason [UnbindReason]
typedef enum SLE_UnbindReason
{
 sleUBR_end = 0,
 sleUBR_suspend = 1,
 sleUBR_versionNotSupported = 2,
 sleUBR_otherReason = 127,
 sleUBR_invalid = -1
} SLE_UnbindReason;

PEER-ABORT Diagnostic [PeerAbortDiagnostic]
typedef enum SLE_PeerAbortDiagnostic
{
 slePAD_accessDenied = 0,
 slePAD_unexpectedResponderId = 1,
 slePAD_operationalRequirement = 2,
 slePAD_protoclError = 3,

CCSDS 914.0-M-1 Page A-9 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

 slePAD_communicationsFailure = 4,
 slePAD_encodingError = 5,
 slePAD_returnTimeout = 6,
 slePAD_endOfServiceProvisionPeriod = 7,
 slePAD_unsolicitedInvokeId = 8,
 slePAD_otherReason = 127,
 slePAD_invalid = -1
} SLE_PeerAbortDiagnostic;

A3.1.5 Types derived from CCSDS-SLE-TRANSFER-COMMON-PDUS
Reporting Cycle [ReportingCycle]
typedef unsigned int SLE_ReportingCycle;

Report Request Type [ReportRequestType]
typedef enum SLE_ReportRequestType
{
 sleRRT_immediately = 0,
 sleRRT_periodically = 1,
 sleRRT_stop = 2,
 sleRRT_invalid = -1
} SLE_ReportRequestType;

SCHEDULE-STATUS-REPORT Diagnostic
[DiagnosticScheduleStatusReport]
typedef enum SLE_ScheduleStatusReportDiagnostic
{
 sleSSD_notSupportedInThisDeliveryMode = 0,
 sleSSD_alreadyStopped = 1,
 sleSSD_invalidReportingCycle = 2,
 sleSSD_invalid = -1
} SLE_ScheduleStatusReportDiagnostic;

A3.2 SLE API TYPES

File SLE_APITypes.h

The following types are used throughout the API Specification.

State of an Association
typedef enum SLE_AssocState
{
 sleAST_unbound = 0,
 sleAST_bindPending = 1, /* Bind initiated remotely */
 sleAST_bound = 2,
 sleAST_remoteUnbindPending = 3, /* Unbind initiated remotely */
 sleAST_localUnbindPending = 4 /* Unbind initiated locally */
} SLE_AssocState;

CCSDS 914.0-M-1 Page A-10 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

State of a Service Instance
typedef enum SLE_SIState
{
 sleSIS_unbound = 0,
 sleSIS_bindPending = 1,
 sleSIS_bound = 2,
 sleSIS_unbindPending = 3,
 sleSIS_startPending = 4,
 sleSIS_active = 5,
 sleSIS_stopPending = 6
} SLE_SIState;

Role of an SLE Application
typedef enum SLE_AppRole
{
 sleAR_user = 0,
 sleAR_provider = 1,
 sleAR_userAndProvider = 2
} SLE_AppRole;

Role of an SLE Application in the BIND Operation
typedef enum SLE_BindRole
{
 sleBR_initiator = 0,
 sleBR_responder = 1,
 sleBR_initiatorAndResponder = 2
} SLE_BindRole;

Port Registration Identifier
typedef void* SLE_PortRegId;

API Components
typedef enum SLE_Component
{
 sleCP_application = 0,
 sleCP_serviceElement = 1,
 sleCP_proxy = 2,
 sleCP_operations = 3,
 sleCP_utilities = 4

} SLE_Component;

Authentication Mode
typedef enum SLE_AuthenticationMode
{
 sleAM_none = 0, /* authentication not used */
 sleAM_bindOnly = 1, /* authetication only for bind */
 sleAM_all = 2 /* authentication for all operations */
} SLE_AuthenticationMode;

CCSDS 914.0-M-1 Page A-11 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Event Handle
#if defined(_SLE_EH_FILE_DESCRIPTOR_) /* UNIX file descriptor */
typedef enum SLE_EventType
{
 sleET_readEvent = 0;
 sleET_writeEvent = 1;
 sleET_exception = 2;
} SLE_EventType;

typedef struct SLE_EventHandle
{
 int filedes; /* file descriptor */
 SLE_EventType eventType;
} SLE_EventHandle;

#elif defined(_SLE_EH_EVENT_FLAG_) /* VMS event flag */
typedef unsigned int SLE_EventHandle;

#elif defined (_SLE_EH_EVENT_OBJECT_) /* Win32 event object */
typedef HANDLE SLE_EventHandle;

/* further definitions may be added in future versions */
#else
typedef void* SLE_EventHandle;
#endif

The format of the event handle depends on the processing platform and the operating system
features selected by the implementation of the API component:

a) On UNIX, the event handle consists of a file descriptor, and the type of events
supported by the select() call. Note that two event handles are considered to
refer to the same event specification only when the file descriptor and the event type
match. Different event types on the same file descriptor are considered unrelated.
(This version can also be used on other platforms supporting select() in the
combination with the socket API.)

b) On Windows systems, event objects can be used.

Timer Identifier
typedef void* SLE_TimerId;

The identifier for a timer supported by the interface ISLE_TimerHandler.

Trace Level
typedef enum SLE_TraceLevel
{
 sleTL_low = 0, /* only state changes */
 sleTL_medium = 1, /* plus all PDUs and internal events */
 sleTL_high = 2, /* plus arguments of the PDU */
 sleTL_full = 3 /* plus encoded data */
} SLE_TraceLevel;

CCSDS 914.0-M-1 Page A-12 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Log Message Types
typedef enum SLE_LogMessageType
{
 sleLM_alarm = 0,
 sleLM_information = 1
} SLE_LogMessageType;

Alarms Notified by the API
typedef enum SLE_Alarm
{
 sleAL_accessViolation = 0,
 sleAL_authFailure = 1,
 sleAL_commsFailure = 2,
 sleAL_localAbort = 3,
 sleAL_remoteAbort = 4
} SLE_Alarm;

Variants of the CCSDS ASCII Time Format
typedef enum SLE_TimeFmt
{
 sleTF_dayOfMonth = 0,
 sleTF_dayOfYear = 1
} SLE_TimeFmt;

Time Resolution
typedef enum SLE_TimeRes
{
 sleTR_minutes = 0,
 sleTR_seconds = 1,
 sleTR_hundredMilliSec = 2,
 sleTR_tenMilliSec = 3,
 sleTR_milliSec = 4,
 sleTR_hundredMicroSec = 5,
 sleTR_tenMicroSec = 6,
 sleTR_microSec = 7
} SLE_TimeRes;

Operation Type
typedef enum SLE_OpType
{
 sleOT_bind = 0,
 sleOT_unbind = 1,
 sleOT_peerAbort = 2,
 sleOT_start = 3,
 sleOT_stop = 4,
 sleOT_transferData = 5,
 sleOT_transferBuffer = 6,
 sleOT_syncNotify = 7,
 sleOT_asyncNotify = 8,
 sleOT_scheduleStatusReport = 9,
 sleOT_statusReport = 10,

CCSDS 914.0-M-1 Page A-13 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

 sleOT_getParameter = 11,
 sleOT_throwEvent = 12,
 sleOT_invokeDirective = 13
} SLE_OpType;

This enumeration specifies all operation types used by SLE Services. Not all operations are
valid for all service types. In addition, operations for different service types differ.
Therefore, an operation object is fully specified only by the combination of ‘operation type’
and ‘service type’.

Operation Result
typedef enum SLE_Result
{
 sleRES_positive = 0,
 sleRES_negative = 1,
 sleRES_invalid = -1
} SLE_Result;

The result currently stored in a confirmed operation object.

Diagnostic Type
typedef enum SLE_DiagnosticType
{
 sleDT_noDiagnostics = 0,
 sleDT_commonDiagnostics = 1,
 sleDT_specificDiagnostics = 2
} SLE_DiagnosticType;

The type of diagnostic stored in a confirmed operation object.

Originator of a Peer Abort
typedef enum SLE_AbortOriginator
{
 sleAO_peer = 0, /* the peer system */
 sleAO_proxy = 1, /* the local proxy */
 sleAO_serviceElement = 2, /* the local service element */
 sleAO_application = 3, /* the local application */
 sleAO_invalid = -1
} SLE_AbortOriginator;

CCSDS 914.0-M-1 Page A-14 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4 SLE UTILITY CLASSES

A4.1 COMPONENT CREATOR FUNCTION

File <impl-id>.H

The component implementing SLE utility classes includes a function to obtain a pointer to
the utility object factory interface. The signature of this function is defined as:

extern "C" HRESULT
 <impl-id>_CreateUtilFactory(const GUID& iid,
 ISLE_TimeSource* ptimeSource,
 void** ppv);

where <impl-id> is replaced by the product identifier of the implementation. Note that
external ‘C’ linkage is required. The function checks the argument identifying the factory
interface and returns an error when the implementation does not support that identifier.

If a pointer to the interface ISLE_TimeSource is supplied, the component uses this
interface to obtain the current time via the interface ISLE_Time. If a NULL pointer is
supplied, the component uses system time.

Arguments
iid identifier of the required interface
ptimeSource pointer to the interface ISLE_TimeSource
ppv pointer to the requested interface of the Utility Factory

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported

A4.2 SLE UTILITY FACTORY

Name ISLE_UtilFactory
GUID {DED624E1-54CB-11d8-9CF5-0004761E8CFB}
Inheritance: IUnknown
File ISLE_UtilFactory.H

The Utility Factory provides the means to create an SLE Utility object with a default
initialization. The factory uses the interface identifier to verify that it can create the
requested version of the object. If the IID is unknown, the factory returns an error. The
lifetime of utility objects is controlled by reference counting as defined in annex D.

Synopsis
#include <SLE_SCM.H>

CCSDS 914.0-M-1 Page A-15 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

interface IMalloc;
interface ISLE_Time;
interface ISLE_SII;
interface ISLE_Credentials;
interface ISLE_SecAttributes;

#define IID_ISLE_UtilFactory_DEF { 0xded624e1, 0x54cb, 0x11d8, \
 { 0x9c, 0xf5, 0x0, 0x4, 0x76, 0x1e, 0x8c, 0xfb } };

interface ISLE_UtilFactory : IUnknown
{
 virtual HRESULT
 CreateMemoryManager(const GUID& iid,
 void** ppv) const = 0;
 virtual HRESULT
 CreateTime(const GUID& iid,
 void** ppv) const = 0;
 virtual HRESULT
 CreateSII(const GUID& iid,
 void** ppv) const = 0;
 virtual HRESULT
 CreateCredentials(const GUID& iid,
 void** ppv) const = 0;
 virtual HRESULT
 CreateSecAttributes(const GUID& iid,
 void** ppv) const = 0;
};

Methods

HRESULT CreateMemoryManager(const GUID& iid, void** ppv) const;

Creates a new memory manager object which implements the COM interface IMalloc.

Arguments
iid identifier of the required interface
ppv pointer to the requested interface of the object

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported

HRESULT CreateTime(const GUID& iid, void** ppv) const;

Creates a new time object, set to current time. Current time is obtained from the interface
ISLE_TimeSource, if this interface was supplied to the creator-function of the
component. Otherwise, the component uses system time.

Arguments
iid identifier of the required interface
ppv pointer to the requested interface of the object

CCSDS 914.0-M-1 Page A-16 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported

HRESULT CreateSII(const GUID& iid, void** ppv) const;

Creates a new service instance identifier object.

Arguments
iid identifier of the required interface
ppv pointer to the requested interface of the object

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported

HRESULT CreateCredentials(const GUID& iid, void** ppv) const;

Creates a new credentials object.

Arguments
iid identifier of the required interface
ppv pointer to the requested interface of the object

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported

HRESULT CreateSecAttributes(const GUID& iid, void** ppv) const;

Creates a new object holding security attributes.

Arguments
iid identifier of the required interface
ppv pointer to the requested interface of the object

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported

CCSDS 914.0-M-1 Page A-17 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.3 SLE MEMORY MANAGER

Name IMalloc
GUID {00000002-0000-0000-C000-000000000046}
Inheritance: IUnknown
File IMalloc.H

The Memory Manager manages dynamic allocation and release of memory blocks. It must
be used for all data structures passed over components boundaries or between the SLE API
and the SLE application.

This interface conforms to the definition in the COM specification (including the GUID) in
order to allow use of the COM memory manager in a COM environment. However, in the
context of the SLE API, only the methods Alloc(), Realloc() and Free() are needed
and implementations may provide dummy implementations of the methods GetSize(),
HeapMinimize(), and DidAlloc(). Clients must not rely on these methods.

A more detailed discussion of memory management is provided in annex D.

Synopsis
#include <SLE_SCM.H>

#define IID_IMalloc_DEF { 0x00000002, 0x0000, 0x0000, \
 { 0xc0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x46 } }

interface IMalloc : IUnknown
{
 virtual void *
 Alloc(unsigned long cb) = 0;
 virtual void *
 Realloc(void* pv, unsigned long cb) = 0;
 virtual void
 Free(void* pv) = 0;
 virtual unsigned long
 GetSize(void* pv) = 0;
 virtual int
 DidAlloc(void* pv) = 0;
 virtual void
 HeapMinimize() = 0;
};

Methods

virtual void * Alloc(unsigned long cb);

Allocates a memory block of at least cb bytes. The initial content of the returned memory
block is undefined. Specifically, it is not guaranteed that the block is zeroed. The block
actually allocated may be larger than cb bytes because of space required for alignment and
for maintenance information.

CCSDS 914.0-M-1 Page A-18 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
cb minimum size (in bytes) of the memory block to be allocated; if

cb is 0, Alloc() allocates a zero-length item and returns a
valid pointer to that item

Results
NULL insufficient memory available
not NULL start address of the allocated memory block

virtual void * Realloc(void* pv, unsigned long cb);

Changes the size of a previously allocated memory block. The content of the block is
unchanged up to the shorter of the new and old sizes, although the new block may be in a
different location. Because the new block can be in a new memory location, the pointer
returned by Realloc() is not guaranteed to be the pointer passed through the pv
argument. If pv is not NULL and cb is 0, then the memory pointed to by pv is freed.

Realloc() returns a void pointer to the reallocated (and possibly moved) memory block.
The return value is NULL if the size is zero and the buffer argument is not NULL, or if there
is not enough available memory to expand the block to the given size. In the first case, the
original block is freed. In the second, the original block is unchanged.

The storage space pointed to by the return value is guaranteed to be suitably aligned for
storage of any type of object. To get a pointer to a type other than void, a type cast on the
return value must be used.

Arguments
pv current start address of the memory block to be reallocated; if

pv is NULL, Realloc() functions in the same way as
Alloc() and allocates a new block of cb bytes; if pv is not
NULL, it should be a pointer returned by a prior call to
Alloc()

cb minimum new size (in bytes) of reallocated memory block

Results
NULL insufficient memory available, or original memory block has

been freed (if cb was 0)
not NULL start address of reallocated memory block

virtual void Free(void* pv);

Deallocates a memory block. The pv argument points to a memory block previously
allocated through a call to Alloc() or Realloc(). The number of bytes freed is the
number of bytes with which the block was originally allocated (or reallocated, in the case of

CCSDS 914.0-M-1 Page A-19 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Realloc()). After the call, the pv parameter is invalid, and can no longer be used. pv
may be NULL, in which case this method does nothing.

Arguments
pv address of memory block to be deallocated

virtual unsigned long GetSize(void* pv);

Returns the size (in bytes) of a memory block previously allocated with
IMalloc::Alloc() or IMalloc::Realloc().

NOTE – Implementations of the SLE Utilities component are not required to support this
feature and may provide a dummy implementation, which always returns zero.

Arguments
pv address of the memory block for which the size should be

returned

virtual int DidAlloc(void* pv);

Determines if this allocator was used to allocate the specified block of memory.

NOTE – Implementations of the SLE Utilities component are not required to support this
feature and may provide a dummy implementation, which always returns –1.

Arguments
pv address of the memory block for which the query is made

Results
1 The memory block was allocated by this IMalloc instance
0 The memory block was not allocated by this IMalloc instance
-1 DidAlloc() is unable to determine whether or not it

allocated the memory block

virtual void HeapMinimize();

Minimizes the heap as much as possible by releasing unused memory to the operating
system, coalescing adjacent free blocks and committing free pages.

NOTE – Implementations of the SLE Utilities component are not required to support this
feature and may provide a dummy implementation, which does nothing.

CCSDS 914.0-M-1 Page A-20 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.4 SLE TIME

Name ISLE_Time
GUID {73517E80-D3F3-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_Time.H

Objects exporting this interface store time information with a resolution of up to one
microsecond. They support input and output in the following formats:

a) CCSDS day segmented time code (CDS);

b) CCSDS ASCII Calendar Segmented Time Code.

They provide methods for comparison of times and calculation of the difference between two
times measured in seconds and fractions of seconds.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>

#define IID_ISLE_Time_DEF { 0x73517e80, 0xd3f3, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } };

interface ISLE_Time : IUnknown
{
 virtual HRESULT
 Set_CDS(const SLE_Octet* time) = 0;
 virtual SLE_Octet*
 Get_CDS() const = 0;
 virtual HRESULT
 Set_DateAndTime(const char* dateAndTime) = 0;
 virtual HRESULT
 Set_Time(const char* time) = 0;
 virtual char*
 Get_Date(SLE_TimeFmt fmt) const = 0;
 virtual char*
 Get_Time(SLE_TimeFmt fmt,
 SLE_TimeRes res = sleTR_seconds) const = 0;
 virtual char*
 Get_DateAndTime(SLE_TimeFmt fmt,
 SLE_TimeRes res = sleTR_seconds) const = 0;
 virtual void
 Update() = 0;
 virtual double
 operator- (const ISLE_Time& time) const = 0;
 virtual bool
 operator== (const ISLE_Time& time) const = 0;
 virtual bool
 operator!= (const ISLE_Time& time) const = 0;
 virtual bool
 operator< (const ISLE_Time& time) const = 0;
 virtual bool

CCSDS 914.0-M-1 Page A-21 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

 operator> (const ISLE_Time& time) const = 0;
 virtual bool
 operator<= (const ISLE_Time& time) const = 0;
 virtual bool
 operator>= (const ISLE_Time& time) const = 0;
 virtual ISLE_Time*
 Copy() const = 0;
};

Methods

HRESULT Set_CDS(const SLE_Octet* time);

Sets the time to the value of the argument presented in the CCSDS day segmented time code.

Arguments
time time coded according to the CCSDS day segmented time code,

consisting of 8 octets; the P-Field is implicit and not included

Result codes
S_OK the time has been set
E_INVALIDARG the argument does not contain the expected format
E_FAIL failure to set the time because of other reasons

SLE_Octet* Get_CDS() const;

Returns the time in the CCSDS day segmented time code, consisting of 8 octets; the P-Field
is implicit and not included. The returned value must be deleted by the client.

HRESULT Set_DateAndTime(const char* dateAndTime);

Sets the date and time to the value specified by the input argument. The ASCII string can be
coded in either variant A or B of the CCSDS ASCII Calendar Segmented Time Code. The
time subset must contain at least the hours. The trailing ‘Z’ may or may not be included.

Arguments
time date and time coded according to the CCSDS ASCII Calendar

Segmented Time Code either format A or B

Result codes
S_OK the time has been set
E_INVALIDARG the argument does not contain a valid date and time representation
E_FAIL failure to set the time because of other reasons

CCSDS 914.0-M-1 Page A-22 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

HRESULT Set_Time(const char* time);

Sets the time to the value specified by the input argument and the date to the current date.
The ASCII string contains the time subset of the CCSDS ASCII Calendar Segmented Time
Code. The time subset must contain at least the hours. The trailing ‘Z’ may or may not be
included.

Arguments
time time subset of the CCSDS ASCII Calendar Segmented Time

Code

Result codes
S_OK the time has been set
E_INVALIDARG the argument does not contain a valid date and time representation
E_FAIL failure to set the time because of other reasons

char* Get_Date(SLE_TimeFmt fmt) const;

Returns an ASCII string with the date formatted according to the CCSDS ASCII Calendar
Segmented Time Code in the variant specified by the input argument. The returned value
must be deleted by the client.

Arguments
fmt the variant of the time code to be used

char* Get_Time(SLE_TimeFmt fmt,
 SLE_TimeRes res = sleTR_seconds) const;

Returns the time (no date) formatted according to the CCSDS ASCII Calendar Segmented
Time Code in the variant and with the resolution specified by the input arguments. The
optional ‘Z’ is included. The returned value must be deleted by the client.

Arguments
fmt the variant of the time code to be used
res the resolution of the time

char* Get_DateAndTime(SLE_TimeFmt fmt,
 SLE_TimeRes res = sleTR_seconds) const;

Returns the time and date formatted according to the CCSDS ASCII Calendar Segmented
Time Code in the variant and with the resolution specified by the input arguments. The
optional ‘Z’ is included. The returned value must be deleted by the client.

CCSDS 914.0-M-1 Page A-23 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
fmt the variant of the time code to be used
res the resolution of the time

void Update();

Sets the value of the time to current time. Current time is obtained from the interface
ISLE_TimeSource, if this interface was supplied to the creator-function of the
component. Otherwise, the component uses system time.

double operator- (const ISLE_Time& time) const;

Calculates the difference between the time stored and the time passed as argument and
returns the difference measured in seconds and fractions of a second.

bool operator== (const ISLE_Time& time) const;
bool operator!= (const ISLE_Time& time) const;
bool operator< (const ISLE_Time& time) const;
bool operator> (const ISLE_Time& time) const;
bool operator<= (const ISLE_Time& time) const;
bool operator>= (const ISLE_Time& time) const;

Standard comparison operators for times.

ISLE_Time* Copy() const;

Copies the time object and returns the interface of the copy.

CCSDS 914.0-M-1 Page A-24 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.5 SLE SERVICE INSTANCE IDENTIFIER

Name ISLE_SII
GUID {EC5C1E4B-1E25-4280-AA17-BA8B510AEC20}
Inheritance: IUnknown
File ISLE_SII.H

Objects exporting this interface handle the service instance identifier defined by the CCSDS
Recommended Standards for SLE transfer services. The interface supports two formats for
the service instance identifier:

a) The standard format as defined by reference [17] with the constraint that the attribute
are always character strings.

b) A standard character string representation defined in the CCSDS Recommended
Standards (for version 1 of the services RAF, RCF, and CLTU, this definition is
provided by annex C of this specification).

The standard format consists of a sequence of ‘attribute value assertions’, i.e., pairs of an
attribute identifier and an attribute value. The attribute identifier is an object identifier as
defined by ASN.1 (reference [15]).

The object is able to process the standard ASCII representation for input and output.

It also accepts the standard format as defined by reference [17] and produces output in this
format. For the global form of the object identifier the object uses the full object identifier
presented as an array of integers. For the local form, it accepts and outputs only the trailing
component of the object identifier, which is unique for all attributes used in a service instance
identifier. For retrieval of the standard format, the object supports a simple built-in iterator
by which the name components can be read.

The object verifies that the structure and contents of the service instance identifier conforms
to the specifications provided in the CCSDS Recommended Standards for SLE transfer
services (for version 1 to the specification in annex C).

After creation the value of the service instance identifier is NULL.

After creation, the format to be used is set to the one defined in the CCSDS Recommended
Standards for SLE transfer services. To use the initial format defined in annex C, the method
Set_InitialFormat() must be called. Support for the initial format is optional and
implementations not supporting this format shall return an error when the method is called.

Synopsis
#include <SLE_SCM.H>

#define IID_ISLE_SII_DEF { 0xec5c1e4b, 0x1e25, 0x4280, \
 { 0xaa, 0x17, 0xba, 0x8b, 0x51, 0xa, 0xec, 0x20 } }

CCSDS 914.0-M-1 Page A-25 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

interface ISLE_SII : IUnknown
{
 virtual bool
 Get_InitialFormatUsed() const = 0;
 virtual HRESULT
 Set_InitialFormat() = 0;
 virtual char*
 Get_AsciiForm() const = 0;
 virtual char*
 GetLastRDN() const = 0;
 virtual HRESULT
 Set_AsciiForm(const char* siiString) = 0;
 virtual bool
 IsNull() const = 0;
 virtual void
 SetToNull() = 0;
 virtual bool
 operator== (const ISLE_SII& sii) const = 0;
 virtual bool
 operator!= (const ISLE_SII& sii) const = 0;
 virtual ISLE_SII*
 Copy() const = 0;
 virtual HRESULT
 Add_GlobalRDN(const int objId[],
 size_t objIdLength,
 const char* value) = 0;
 virtual HRESULT
 Add_LocalRDN(int objId, const char* value) = 0;
 virtual void
 Reset() = 0;
 virtual bool
 MoreData() = 0;
 virtual HRESULT
 NextGlobalRDN(int*& objId,
 size_t& objIdLength,
 char*& value) = 0;
 virtual HRESULT
 NextLocalRDN(int& objId,
 char*& value) = 0;
};

Methods

Bool Get_InitialFormatUsed();

Returns TRUE if the initial format defined in annex C is being used and FALSE otherwise.

HRESULT Set_InitialFormat();

Requests use of the initial format defined in annex C of this Specification to support version
1 of the services RAF, RCF, and CLTU.

CCSDS 914.0-M-1 Page A-26 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK the request has been accepted
E_NOTIMPL the implementation does not support the initial format

char* Get_AsciiForm() const;

Returns the ASCII representation of the service instance identifier or the string ‘***’ if the
identifier is NULL. The string must be deleted by the client.

char* GetLastRDN() const;

Returns the ASCII representation of the last component of the service instance identifier or
the string ‘***’ if the identifier is NULL. The string must be deleted by the client.

HRESULT Set_AsciiForm(const char* siiString);

Parses the input string and sets the value of the service instance identifier as defined by the
string. If the string is badly formatted or contains attributes that are not defined for the
service instance identifier, returns an error and sets the value of the service instance identifier
to NULL.

Arguments
siiString an ASCII string defining the service instance identifier

Result codes
S_OK the value of the service instance identifier has been set as

defined by the input argument
E_INVALIDARG syntax error in the input
SLE_E_INVALIDID unknown attribute abbreviation encountered
SLE_E_SEQUENCE incorrect sequence of attributes

bool IsNull() const;

Returns true if the value if the service instance identifier is NULL.

void SetToNull();

Sets the value of service instance identifier to NULL.

bool operator== (const ISLE_SII& sii) const;
bool operator!= (const ISLE_SII& sii) const;

The standard equality operators for service instance identifiers.

CCSDS 914.0-M-1 Page A-27 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ISLE_SII* Copy() const;

Performs a deep copy of the service instance identifier and returns the copy.

HRESULT Add_GlobalRDN(const int objId[],
 size_t objIdLength,
 const char* value);

Appends a relative distinguished name (i.e., an attribute identifier - attribute value pair) to the
end of the service instance identifier. If the object identifier is not defined for the service
instance identifier or the value is empty, returns an error and does not add the name to service
instance identifier.

Arguments
objId the object identifier of the attribute presented as an array of

integers; the array is copied by the object
objIdLength the number of components of the object identifier
value the value of the attribute

Result codes
S_OK the relative distinguished name has been appended to the

service instance identifier
SLE_E_BADVALUE value contains characters that are not permitted
SLE_E_INVALIDID unknown attribute identifier
SLE_E_SEQUENCE incorrect sequence of attributes

HRESULT Add_LocalRDN(int objId, const char* value);

Appends a relative distinguished name to the end of the service instance identifier. For this
method the attribute is identified by the last component of the object identifier. If the object
identifier is not defined for the service instance identifier or the value is empty, returns an
error and does not add the name to service instance identifier.

Arguments
objId the last component of the object identifier of the attribute
value the value of the attribute

CCSDS 914.0-M-1 Page A-28 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK the relative distinguished name has been appended to the

service instance identifier
SLE_E_BADVALUE value contains characters that are not permitted
SLE_E_INVALIDID unknown attribute identifier
SLE_E_SEQUENCE incorrect sequence of attributes

Iteration Methods
void Reset();

Resets the internal iterator to the beginning of the service instance identifier.

bool MoreData();

Returns true when the iterator has not yet reached the end of the service instance identifier.
I.e., the next to call to NextGlobalRDN() or NextLocalRDN() will return a relative
distinguished name. Otherwise, returns false.

HRESULT NextGlobalRDN(int*& objId,
 size_t& objIdLength,
 char*& value) const;

Returns the relative distinguished name pointed at by the iterator in the global form and
forwards the iterator by one element. If the iterator has reached the end of the service
instance identifier or the service identifier is NULL, returns an error.

Arguments
objId the object identifier of the attribute presented as an array of

integers; the array is a copy of the internal data and must be
deleted by the client

objIdLength the length of the object identifier
value the value of the attribute; this is a copy of the internal data,

which must be deleted by the client

Result codes
S_OK the output arguments contain the relative distinguished name
SLE_S_EOD end of service instance identifier reached
SLE_S_NULL service instance identifier is NULL

HRESULT NextLocalRDN(int& objId, char*& value) const;

Returns the relative distinguished name pointed at by the iterator in the local form and
forwards the iterator by one element. If the iterator has reached the end of the service
instance identifier or the service identifier is NULL, returns an error.

CCSDS 914.0-M-1 Page A-29 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
objId the last component of the object identifier of the attribute
value the value of the attribute; this is a copy of the internal data

which must be deleted by the client

Result codes
S_OK the output arguments contain the relative distinguished name
SLE_S_EOD end of service instance identifier reached
SLE_S_NULL service instance identifier is NULL

CCSDS 914.0-M-1 Page A-30 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.6 SLE CREDENTIALS

Name ISLE_Credentials
GUID {D020B002-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_Credentials.H

Objects implementing this interface hold the credentials used for authentication of the peer
identity. The credentials comprise a message digest (the protected), a random number, and
the time when the message digest was generated. For the message digest the object does not
make any assumptions on the format, size, or encoding. It simply stores the sequence of
bytes passed to it.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_Time;

#define IID_ISLE_Credentials_DEF { 0xd020b002, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Credentials : IUnknown
{
 virtual long
 Get_RandomNumber() const = 0;
 virtual const SLE_Octet*
 Get_Protected(size_t& size) const = 0;
 virtual const ISLE_Time&
 Get_TimeRef() const = 0;
 virtual void
 Set_RandomNumber(long number) = 0;
 virtual void
 Set_Protected(const SLE_Octet* hashCode, size_t size) = 0;
 virtual void
 Set_TimeRef(const ISLE_Time& time) = 0;
 virtual bool
 operator== (const ISLE_Credentials& credentials) const = 0;
 virtual bool
 operator!= (const ISLE_Credentials& credentials) const = 0;
 virtual ISLE_Credentials*
 Copy() const = 0;
 virtual char*
 Dump() const = 0;
};

CCSDS 914.0-M-1 Page A-31 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
long Get_RandomNumber() const;

Returns the random number currently stored in the object or zero when no value has been set.
Of course, zero is as random as any other number. A return value of zero does not indicate
that the attribute has not been set.

const SLE_Octet* Get_Protected(size_t& size) const;

Returns the hash code (‘the protected’) currently stored in the object or a NULL pointer
when no value has been set.

const ISLE_Time& Get_TimeRef() const;

Returns the generation time stored in the object; if no values have been set, the time value is
undefined.

void Set_RandomNumber(long number);

Sets the random number to the value of the input argument.

void Set_Protected(const SLE_Octet* hashCode, size_t size);

Sets the hash code in the object copying the input argument.

void Set_TimeRef(const ISLE_Time& time);

Sets the generation time in the object copying the input argument.

bool operator== (const ISLE_Credentials& credentials) const;
bool operator!= (const ISLE_Credentials& credentials) const;

Comparison operators for credentials.

ISLE_Credentials* Copy() const;

Performs a deep copy and returns it.

char* Dump() const;

Produces a human readable string of the object contents. The returned value must be deleted
by the client.

CCSDS 914.0-M-1 Page A-32 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.7 SLE SECURITY ATTRIBUTES

Name ISLE_SecAttributes
GUID {D020B003-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_SecAttributes.H

Objects implementing this interface hold the user name and the password required for generating
and authenticating credentials. For the password the object does not make any assumptions on
the format, size, or encoding. It simply stores the sequence of bytes passed to it.

The interface provides methods to generate credentials and to authenticate credentials. The
procedure applied for both methods is specified in 3.5.6.

Because the object stores sensitive information it does not provide methods for read access
and does not support printing of the contents.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_Credentials;

#define IID_ISLE_SecAttributes_DEF { 0xd020b003, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_SecAttributes : IUnknown
{
 virtual void
 Set_UserName(const char* name) = 0;
 virtual void
 Set_Password(const SLE_Octet* pwd, size_t size) = 0;
 virtual void
 Set_HexPassword(const char* pwd) = 0;
 virtual ISLE_Credentials*
 GenerateCredentials() const = 0;
 virtual bool
 Authenticate(const ISLE_Credentials& credentials,
 int acceptableDelay) const = 0;
 virtual bool
 operator== (const ISLE_SecAttributes& secAttr) const = 0;
 virtual bool
 operator!= (const ISLE_SecAttributes& secAttr) const = 0;
 virtual ISLE_SecAttributes*
 Copy() const = 0;
};

Methods
void Set_UserName(const char* name);

CCSDS 914.0-M-1 Page A-33 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Sets the user name to the value defined by the argument.

Arguments
name user name

Precondition: The length of the string supplied as argument is >= 3 and <= 16 characters.

void Set_Password(const SLE_Octet* pwd, size_t size);

Sets the password to the value defined by the arguments.

Arguments
pwd pointer to the password
size the size of the password in bytes

Precondition: The length of the octet string supplied as argument is >= 6 and <= 16 octets.

void Set_HexPassword(const char* pwd);

Sets the password to the value described by the argument.

Arguments
pwd An ASCII string with a hex representation of the password. The

ASCII string consists of an even number of hex digits (two hex
digits for each byte of the password) without blanks and without
any prefix or postfix. The ASCII string may only contain ASCII
characters from the set {‘0’ - ‘9’, ‘A’ - ‘F’, ‘a’ - ‘f’}.’

Precondition: The length of the octet string represented by the argument is >=6 and <=16
octets.

ISLE_Credentials* GenerateCredentials() const;

Generates and returns credentials from the attributes stored to the object. When any of the
attributes have not been set, returns NULL.

bool Authenticate(const ISLE_Credentials& credentials,
 int acceptableDelay) const;

Verifies that the credentials passed as argument have been generated from the attributes
stored to the object within the acceptable time delay. Returns true, if authentication
succeeds and false otherwise.

CCSDS 914.0-M-1 Page A-34 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
credentials the credentials that shall be authenticated
acceptableDelay the acceptable delay between the time the credentials have been

generated and the time of authentication

bool operator== (const ISLE_SecAttributes& secAttr) const;
bool operator!= (const ISLE_SecAttributes& secAttr) const;

The standard equality operators for security attributes.

ISLE_SecAttributes* Copy() const;

Performs a deep copy of the object and returns the copy.

CCSDS 914.0-M-1 Page A-35 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5 SLE OPERATION OBJECTS

A5.1 COMPONENT CREATOR FUNCTION

File <impl-id>.H

The component implementing operation objects includes a function to obtain a pointer to the
operation factory interface. The signature of this function is defined as:

extern "C" HRESULT
 <impl-id>_CreateOpFactory(const GUID& iid,
 ISLE_UtilFactory* putil,
 ISLE_Reporter* preporter,
 void** ppv);

where <impl-id> is replaced by the product identifier of the implementation. Note that
external ‘C’ linkage is required. A reference to the utility factory that shall be used by the
component must be passed as an argument. The function checks the argument identifying
the operation factory interface and returns an error when the implementation does not support
that identifier.

A pointer to the reporter interface can optionally be passed as well. Operation objects may
use this interface to report error messages, if it is provided. The extent to which error
logging is supported is implementation dependent.

Arguments
iid identifier of the required interface
putil pointer to the interface of the Utility Factory
preporter pointer to the reporter interface for passing of log messages and

notifications to the application
ppv pointer to the requested interface of the Operation Factory

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported
E_INVALIDARG the reference to the utility factory or reporter is missing

CCSDS 914.0-M-1 Page A-36 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.2 SLE OPERATION FACTORY

Name ISLE_OperationFactory
GUID {BB4DDA22-54CD-11d8-9CF5-0004761E8CFB}
Inheritance: IUnknown
File ISLE_OperationFactory

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
#include <SLE_Types.h>
interface ISLE_Operation;

#define IID_ISLE_OperationFactory_DEF { 0xbb4dda22, 0x54cd, 0x11d8, \
 { 0x9c, 0xf5, 0x0, 0x4, 0x76, 0x1e, 0x8c, 0xfb } }

interface ISLE_OperationFactory : IUnknown
{
 virtual HRESULT
 CreateOperation(const GUID& iid,
 SLE_OpType opType,
 SLE_ApplicationIdentifier srvType,
 SLE_VersionNumber version,
 void** ppv) const = 0;
};

Methods
HRESULT CreateOperation(const GUID& iid,
 SLE_OpType opType,
 SLE_ApplicationIdentifier srvType,
 SLE_VersionNumber version,
 void ** ppv) const;

Creates a new operation object as specified by the arguments. If the interface cannot be
found, does not refer to an operation object interface of the specified type, or is not supported
for the specified service type, returns an error and sets the output argument to NULL.

Arguments
iid GUID for the operation object interface to be returned
opType the operation object type that shall be created
srvType the service type for which an operation is requested
version the version number of the service type identified by srvType,

which must be greater than zero
ppv a pointer to the requested interface

CCSDS 914.0-M-1 Page A-37 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported
SLE_E_INCONSISTENT the requested operation type is not supported by the specified

service type

CCSDS 914.0-M-1 Page A-38 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.3 BASIC INTERFACES

A5.3.1 SLE Operation

Name ISLE_Operation
GUID {BB4DDA25-54CD-11d8-9CF5-0004761E8CFB}
Inheritance: IUnknown
File ISLE_Operation.H

The interface defines basic characteristics supported by all operation objects.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
#include <SLE_Types.h>
interface ISLE_Credentials;

#define IID_ISLE_Operation_DEF { 0xbb4dda25, 0x54cd, 0x11d8, \
 { 0x9c, 0xf5, 0x0, 0x4, 0x76, 0x1e, 0x8c, 0xfb } }

interface ISLE_Operation : IUnknown
{
 virtual SLE_ApplicationIdentifier
 Get_OpServiceType() const = 0;
 virtual SLE_VersionNumber
 Get_OpVersionNumber() const = 0;
 virtual SLE_OpType
 Get_OperationType() const = 0;
 virtual bool
 IsConfirmed() const = 0;
 virtual const ISLE_Credentials*
 Get_InvokerCredentials() const = 0;
 virtual void
 Set_InvokerCredentials(const ISLE_Credentials& credentials) = 0;
 virtual void
 Put_InvokerCredentials(ISLE_Credentials* pcredentials) = 0;
 virtual HRESULT
 VerifyInvocationArguments() const = 0;
 virtual HRESULT
 Lock() = 0;
 virtual HRESULT
 TryLock() = 0;
 virtual HRESULT
 Unlock() = 0;
 virtual ISLE_Operation*
 Copy()const = 0;
 virtual char*
 Print(int maxDumpLength) const = 0;
};

CCSDS 914.0-M-1 Page A-39 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods

SLE_ApplicationIdentifier Get_OpServiceType() const;

Returns the SLE service type for the operation.

SLE_VersionNumber Get_OpVersionNumber() const;

Returns the version number of the SLE Service type for the operation.

SLE_OpType Get_OperationType() const;

Returns the type of operation as defined by SLE_OpType.

bool IsConfirmed() const;

Returns true if the operation is a confirmed operation, false otherwise.

const ISLE_Credentials* Get_InvokerCredentials() const;

Returns a pointer to the invoker credentials or NULL when no credentials are present.

void Set_InvokerCredentials(const ISLE_Credentials& credentials);

Sets the invoker credentials copying the input argument.

void Put_InvokerCredentials(ISLE_Credentials* pcredentials);

Sets the invoker credentials to the input argument. The input argument will be deleted by the
operation object.

HRESULT VerifyInvocationArguments() const;

Verifies the invocation arguments with respect to completeness, consistency, and range.

CCSDS 914.0-M-1 Page A-40 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK all checks passed
SLE_E_MISSINGARG at least one argument is missing
SLE_E_INCONSISTENT the arguments are inconsistent
SLE_E_RANGE at least one argument is out of range

Further results codes might be specified by supplemental Recommended Practice documents
for service-specific APIs. These result codes must be taken into account by implementations
of derived interfaces.

HRESULT Lock();

Sets an advisory lock on the operation object.

Result codes
S_OK lock has been set
E_FAIL further unspecified error

HRESULT TryLock();

Sets the lock on the object if possible. If the lock is currently not available returns
immediately.

Result codes
S_OK lock has been set
SLE_S_LOCKED lock not available
E_FAIL further unspecified error

HRESULT Unlock();

Releases a lock previously set on the operation object.

Result codes
S_OK lock has been removed
E_FAIL further unspecified error

ISLE_Operation* Copy();

Performs a deep copy of the operation object and returns a pointer to the new object.

char* Print(int maxDumpLength) const;

Generates and returns a human readable printout of the object attributes.

CCSDS 914.0-M-1 Page A-41 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
maxDumpLength defines the maximum length in bytes of hexadecimal dumps

produced for binary parameters, such as space data units

Default Setting of Operation Parameters after Creation

Argument Created directly Created by Service Instance

service type set in the create request as defined for the SI

version number set in the create request as defined for the SI

operation type set in the create request according to the request

confirmed operation depending on derived I/F depending on derived I/F

invoker credentials used false false

invoker credentials NULL NULL

Checking of Invocation Parameters

No checks are defined for the parameters handled by this interface.

CCSDS 914.0-M-1 Page A-42 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.3.2 SLE Confirmed Operation

Name ISLE_ConfirmedOperation
GUID {D020B006-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown – ISLE_Operation
File ISLE_ConfirmedOperation.H

The interface defines characteristics supported by all confirmed operation objects.

Synopsis
#include <ISLE_Operation.H>

#define IID_ISLE_ConfirmedOperation_DEF {0xd020b006, 0xccd1, 0x11d2,\
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_ConfirmedOperation : ISLE_Operation
{
 virtual SLE_Result
 Get_Result() const = 0;
 virtual SLE_DiagnosticType
 Get_DiagnosticType() const = 0;
 virtual SLE_Diagnostics
 Get_Diagnostics() const = 0;
 virtual SLE_InvokeId
 Get_InvokeId() const = 0;
 virtual const ISLE_Credentials*
 Get_PerformerCredentials() const = 0;
 virtual void
 Set_PositiveResult() = 0;
 virtual void
 Set_Diagnostics(SLE_Diagnostics diagnostic) = 0;
 virtual void
 Set_InvokeId(SLE_InvokeId id) = 0;
 virtual void
 Set_PerformerCredentials(const ISLE_Credentials& credentials) = 0;
 virtual void
 Put_PerformerCredentials(ISLE_Credentials* pcredentials) = 0;
 virtual HRESULT
 VerifyReturnArguments() const = 0;
};

Methods

SLE_Result Get_Result() const;

Returns the result (positive / negative) stored to the object.

SLE_DiagnosticType Get_DiagnosticType() const;

Returns the type of diagnostic (general, special, none) stored to the object.

CCSDS 914.0-M-1 Page A-43 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

SLE_Diagnostics Get_Diagnostics() const;

Returns the common diagnostics if set in the object.

SLE_InvokeId Get_InvokeId() const;

Returns the Invocation Identifier currently set in the object.

const ISLE_Credentials* Get_PerformerCredentials() const;

Returns a pointer to the performer credentials or NULL when no credentials are present.

void Set_PositiveResult();

Sets the result of the operation to positive and the diagnostic type to ‘invalid’. A negative
result is set with the diagnostics.

void Set_Diagnostics(SLE_Diagnostics diagnostic);

Sets the common diagnostics to the input argument, sets the diagnostic type to ‘common’ and
the result to negative.

void Set_InvokeId(SLE_InvokeId id);

Sets the invoke identifier to the value passed as argument.

void Set_PerformerCredentials(const ISLE_Credentials& credentials);

Sets the performer credentials copying the input argument.

void Put_PerformerCredentials(ISLE_Credentials* pcredentials);

Sets the performer credentials to the input argument. The credentials argument will be
deleted by the operation object.

HRESULT VerifyReturnArguments();

Verifies the invocation arguments with respect to completeness, consistency, and range.

CCSDS 914.0-M-1 Page A-44 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK all checks passed
SLE_E_MISSINGARG at least one argument is missing
SLE_E_INCONSISTENT the arguments are inconsistent, e.g., do not match the invocation

arguments
SLE_E_RANGE at least one argument is out of range
SLE_E_DIAGNOSTIC the diagnostic code is missing, unknown, or inconsistent with

the result

Further results codes might be specified by for specific SLE services. These result codes
must be taken into account by implementations of derived interfaces.

Default Setting of Operation Parameters after Creation

Argument Created directly Created by Service Instance

result ‘invalid’ ‘invalid’

diagnostic type ‘none’ ‘none’

common diagnostics ‘invalid’ ‘invalid’

performer credentials used false false

performer credentials NULL NULL

invocation identifier 0 0 (will be handled by the service
instance)

Checking of Return Parameters

Argument Required condition

result must be set

diagnostic type if the result is ‘negative’ must be ‘common’ or ‘specific’

common diagnostics if the diagnostic type is common, must not be ‘invalid’

CCSDS 914.0-M-1 Page A-45 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.4 COMMON ASSOCIATION MANAGEMENT

A5.4.1 BIND Operation

Name ISLE_Bind
GUID {D020B007-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation
File ISLE_Bind.H

The interface provides access to the parameters of the operation BIND. Through its
inheritance, it provides access to the parameter ‘invocation identifier’. This parameter is not
defined for the BIND operation and must not be used. The API proxy and the API Service
Element must exclude this operation from the checks related to invocation identifiers.

The SLE service type and version number applicable for the operation object are defined
when the object is created (see ISLE_UtilFactory) and the interface
ISLE_Operation provides access to these attributes. This interface defines additional
attributes for the SLE service type and version number, which represent the parameters of the
SLE BIND operation and can be modified via this interface.

Synopsis
#include <ISLE_ConfirmedOperation.H>
interface ISLE_SII;

#define IID_ISLE_Bind_DEF { 0xd020b007, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Bind : ISLE_ConfirmedOperation
{
 virtual const char*
 Get_InitiatorIdentifier() const = 0;
 virtual const char*
 Get_ResponderIdentifier() const = 0;
 virtual const char*
 Get_ResponderPortIdentifier() const = 0;
 virtual const ISLE_SII&
 Get_ServiceInstanceId() const = 0;
 virtual void
 Set_InitiatorIdentifier(const char* id) = 0;
 virtual void
 Set_ResponderIdentifier(const char* id) = 0;
 virtual void
 Set_ResponderPortIdentifier(const char* port) = 0;
 virtual void
 Set_ServiceInstanceId(const ISLE_SII& siid) = 0;
 virtual void
 Put_ServiceInstanceId(ISLE_SII* psiid) = 0;
 virtual SLE_ApplicationIdentifier
 Get_ServiceType() const = 0;
 virtual SLE_VersionNumber
 Get_VersionNumber() const = 0;

CCSDS 914.0-M-1 Page A-46 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

 virtual void
 Set_ServiceType(SLE_ApplicationIdentifier serviceType) = 0;
 virtual void
 Set_VersionNumber(SLE_VersionNumber version) = 0;
 virtual SLE_BindDiagnostic
 Get_BindDiagnostic() const = 0;
 virtual void
 Set_BindDiagnostic(SLE_BindDiagnostic diagnostic) = 0;
};

Methods
const char* Get_InitiatorIdentifier() const;

Returns the identifier for initiating SLE Application set in the object or NULL if the
parameter has not been set.

const char* Get_ResponderIdentifier() const;

Returns the identifier for responding SLE Application set in the object or NULL if the
parameter has not been set.

const char* Get_ResponderPortIdentifier() const;

Returns the responder port identifier if currently set in the object. Otherwise returns a NULL
pointer.

const ISLE_SII& Get_ServiceInstanceId() const;

Returns the service instance identifier set in the object.

Precondition: service instance identifier is present in the object.

void Set_InitiatorIdentifier(const char* id);

Sets the identifier of the initiating SLE Application.

void Set_ResponderIdentifier(const char* id);

Sets the identifier of the responding SLE Application.

void Set_ResponderPortIdentifier(const char* port);

Sets the initiator port identifier copying the input argument.

void Set_ServiceInstanceId(const ISLE_SII& siid);

Sets the service instance identifier copying the input argument.

void Put_ServiceInstanceId(ISLE_SII* psiid);

CCSDS 914.0-M-1 Page A-47 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Sets the service instance identifier to the input argument. The service instance identifier
passed is deleted by the component.

SLE_ApplicationIdentifier Get_ServiceType();

Returns the service type currently stored in the object. Note that this method differs from the
inherited method Get_OpServiceType(), which returns the service type for which the
operation object was created (see ISLE_UtilFactory and ISLE_Operation).

SLE_VersionNumber Get_VersionNumber() const;

Returns the version number currently set in the object. Note that this method differs from the
inherited method Get_OpVersionNumber(), which returns the version of the service
type for which the operation object was created (see ISLE_UtilFactory and
ISLE_Operation).

void Set_ServiceType(SLE_ApplicationIdentifier serviceType);

Sets the service type to the input argument.

void Set_VersionNumber(SLE_VersionNumber version);

Sets the version to the input argument.

SLE_BindDiagnostic Get_BindDiagnostic();

Returns the bind diagnostic currently set in the object.

void Set_BindDiagnostic(SLE_BindDiagnostic diagnostic);

Sets the result to negative, the diagnostic type to ‘specific’, and the diagnostics to the input
argument.

Default Setting of Operation Parameters after Creation

Argument Created directly Created by Service Instance

initiator identifier NULL NULL

responder identifier NULL as defined for the SI

responder port identifier NULL as defined for the SI

service instance identifier NULL as defined for the SI

service type as requested for creation as defined for the SI

version number as requested for creation as defined for the SI

bind diagnostic ‘invalid’ ‘invalid’

CCSDS 914.0-M-1 Page A-48 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Checking of Invocation Parameters

Argument Required condition

responder identifier must be set

responder port identifier must be set

service instance identifier must be set

service type must be set

version number must be set

The checks defined here include a check on the presence of the responder identifier and
therefore apply to the BIND initiating side only. On the responding side, the method
VerifyInvocationArguments() should not be called, because it might return an
error although the BIND invocation PDU is correct. Calling of this method on the responder
side is not necessary, because all arguments are subject to specific tests performed by the
components API proxy and API Service Element.

Checking of Return Parameters

Argument Required condition

bind diagnostic if the result is negative and the diagnostic type is ‘specific’ must not be
‘invalid’

CCSDS 914.0-M-1 Page A-49 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.4.2 UNBIND Operation

Name ISLE_Unbind
GUID {7B425720-D32D-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation
File ISLE_Unbind.H

The interface provides access to the parameters of the operation UNBIND. Through its
inheritance, it provides access to the parameter ‘invocation identifier’. This parameter is not
defined for the UNBIND operation and must not be used. The API proxy and the API Service
Element must exclude this operation from the checks related to invocation identifiers.

Synopsis
#include <ISLE_ConfirmedOperation.H>

#define IID_ISLE_Unbind_DEF { 0x7b425720, 0xd32d, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Unbind : ISLE_ConfirmedOperation
{
 virtual SLE_UnbindReason
 Get_UnbindReason() const = 0;
 virtual void
 Set_UnbindReason(SLE_UnbindReason reason) = 0;
};

Methods

SLE_UnbindReason Get_UnbindReason() const;

Returns the unbind reason currently set in the object.

void Set_UnbindReason(SLE_UnbindReason reason);

Sets the unbind reason to the input argument.

Default Setting of Operation Parameters after Creation
Argument Created directly Created by Service Instance

unbind reason ‘invalid’ ‘invalid’

Checking of Invocation Parameters
Argument Required condition

unbind reason must not be ‘invalid’

Checking of Return Parameters

No checks are defined for parameters handled by this interface.

CCSDS 914.0-M-1 Page A-50 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.4.3 PEER-ABORT Operation

Name ISLE_PeerAbort
GUID {7B425721-D32D-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown – ISLE_Operation
File ISLE_PeerAbort.H

The interface provides access to the parameters of the operation PEER-ABORT. Through its
inheritance, it provides access to the parameter ‘invoker credentials’. This parameter is not
defined for the PEER-ABORT operation and must not be used. The proxy must ensure that
authentication is not applied to the PEER-ABORT operation, even if the parameter is set in
the operation object by mistake.

In addition to the parameters defined for the SLE operation, objects exporting this interface
store the originator of the abort, which can be the peer system, the local proxy, the local
service element, or the local application. This information is not forwarded across the
association.

Synopsis
#include <ISLE_Operation.H>

#define IID_ISLE_PeerAbort_DEF { 0x7b425721, 0xd32d, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_PeerAbort : ISLE_Operation
{
 virtual SLE_PeerAbortDiagnostic
 Get_PeerAbortDiagnostic() const = 0;
 virtual void
 Set_PeerAbortDiagnostic(SLE_PeerAbortDiagnostic diagnostic) = 0;
 virtual SLE_AbortOriginator
 Get_AbortOriginator() const = 0;
 virtual void
 Set_AbortOriginator(SLE_AbortOriginator originator) = 0;
};

Methods

SLE_PeerAbortDiagnostic Get_PeerAbortDiagnostic() const;

Returns the special diagnostics for PEER-ABORT, if these are available. The type of the
diagnostics can be checked by the method provided by the base class.

void Set_PeerAbortDiagnostic(SLE_PeerAbortDiagnostic diagnostic);

Sets the PEER-ABORT diagnostic, and the diagnostic type to ‘specific’.

SLE_AbortOriginator Get_AbortOriginator() const;

CCSDS 914.0-M-1 Page A-51 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Returns the originator of the abort.

void Set_AbortOriginator(SLE_AbortOriginator originator);

Sets the originator of the abort to the input argument.

Default Setting of Parameters after Creation

Argument Created directly Created by Service Instance

peer abort diagnostics ‘invalid’ ‘invalid’

abort originator ‘invalid’ ‘application’

Checking of Invocation Parameters

No checking is performed.

CCSDS 914.0-M-1 Page A-52 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.5 OTHER COMMON OPERATIONS

A5.5.1 STOP Operation

Name ISLE_Stop
GUID {7B425723-D32D-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation
File ISLE_Stop.H

This is an empty interface, as all functionality required is covered by the inherited interfaces.
The specific interface exists in order to attach the required identifier.

Synopsis
#include <ISLE_ConfirmedOperation.H>

#define IID_ISLE_Stop_DEF { 0x7b425723, 0xd32d, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Stop : ISLE_ConfirmedOperation {};

Methods
This interface does not define any new methods.

CCSDS 914.0-M-1 Page A-53 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.5.2 SCHEDULE STATUS REPORT Operation

Name ISLE_ScheduleStatusReport
GUID {7B425724-D32D-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation
File ISLE_ScheduleStatusReport.H

Synopsis
#include <ISLE_ConfirmedOperation.H>

#define IID_ISLE_ScheduleStatusReport_DEF \
 { 0x7b425724, 0xd32d, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_ScheduleStatusReport : ISLE_ConfirmedOperation
{
 virtual SLE_ReportRequestType
 Get_ReportRequestType() const = 0;
 virtual void
 Set_ReportRequestType(SLE_ReportRequestType type) = 0;
 virtual SLE_ReportingCycle
 Get_ReportingCycle() const = 0;
 virtual void
 Set_ReportingCycle(SLE_ReportingCycle cycle) = 0;
 virtual SLE_ScheduleStatusReportDiagnostic
 Get_SSRDiagnostic() const = 0;
 virtual void
 Set_SSRDiagnostic(SLE_ScheduleStatusReportDiagnostic diagnostic)= 0;
};

Methods

SLE_ReportRequestType Get_ReportRequestType() const;

Returns the type of request (immediate, periodically, stop).

void Set_ReportRequestType(SLE_ReportRequestType type);

Sets the type of request.

SLE_ReportingCycle Get_ReportingCycle() const;

Returns the reporting cycle value currently set in the object.

Precondition: The report request type is set to ‘periodically’.

void Set_ReportingCycle(SLE_ReportingCycle cycle);

Sets the reporting cycle to the value passed as argument.

CCSDS 914.0-M-1 Page A-54 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Precondition: The report request type is set to ‘periodically’.

SLE_ScheduleStatusReportDiagnostic Get_SSRDiagnostic() const;

Returns the diagnostic code if set in the object.

void Set_SSRDiagnostic(SLE_ScheduleStatusReportDiagnostic
diagnostic);

Sets the diagnostic code to the value of the argument, the diagnostic type to ‘specific’, and
the result to ‘negative’.

Default Setting of Operation Parameters after Creation

Argument Created directly Created by Service Instance

report request type ‘invalid’ ‘invalid’

reporting cycle zero zero

schedule status report
diagnostic

‘invalid’ ‘invalid’

Checking of Invocation Parameters

Argument Required condition

report request type must not be ‘invalid’

reporting cycle must be set if the reporting type is periodically; if used the value must
be in the range 2 to 600 seconds

Checking of Return Parameters

Argument Required condition

schedule status report
diagnostic

if the diagnostic type is ‘specific’ must not be ‘invalid’

CCSDS 914.0-M-1 Page A-55 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.5.3 TRANSFER BUFFER Operation

Name ISLE_TransferBuffer
GUID {7B425725-D32D-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown – ISLE_Operation
File ISLE_TransferBuffer.H

Synopsis
#include <ISLE_Operation.H>

#define IID_ISLE_TransferBuffer_DEF { 0x7b425725, 0xd32d, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_TransferBuffer : ISLE_Operation
{
 virtual size_t
 Get_MaximumSize() const = 0;
 virtual HRESULT
 Set_MaximumSize(size_t size) = 0;
 virtual size_t
 Get_Size() const = 0;
 virtual bool
 Full() const = 0;
 virtual bool
 Empty() const = 0;
 virtual void
 Append(ISLE_Operation* poperation) = 0;
 virtual void
 Prepend(ISLE_Operation* poperation,
 bool extend = false) = 0;
 virtual ISLE_Operation*
 RemoveFront() = 0;
 virtual ISLE_Operation*
 RemoveRear() = 0;
 virtual const ISLE_Operation*
 Front() const = 0;
 virtual void
 Clear() = 0;
 virtual void
 Reset() = 0;
 virtual bool
 MoreData() const = 0;
 virtual const ISLE_Operation*
 Next() = 0;
};

CCSDS 914.0-M-1 Page A-56 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
size_t Get_MaximumSize() const;

Returns the maximum number of elements that can be stored into the buffer.

HRESULT Set_MaximumSize(size_t size);

Sets the maximum number of elements that can be stored into the buffer. If the current size
exceeds the requested maximum size returns an error.

Result codes
S_OK the maximum size has been set as requested
E_FAIL the maximum size has not been set because it would require

deletion of stored objects

size_t Get_Size() const;

Returns the number of elements currently stored in the buffer.

bool Full() const;

Returns true if the number of stored elements equals the maximum number that can be
stored.

bool Empty() const;

Returns true if nothing is stored in the buffer.

void Append(ISLE_Operation* poperation);

Appends the operation object to the end of the buffer. The operation object will be deleted
by the buffer when it itself is deleted.

Preconditions: The buffer is not full and the operation object is of the correct type.

void Prepend(ISLE_Operation* poperation, bool extend = false);

Inserts the operation object at the front of the buffer. If the argument ‘extend’ is set to true,
the buffer is extended if it is already full and the maximum size is adjusted.

Preconditions: The buffer is not full or the argument ‘extend’ is set to true; the operation
object is of the correct type.

ISLE_Operation* RemoveFront();

Returns the operation object at the beginning of the buffer and removes it from the buffer. If
the buffer is empty returns NULL.

CCSDS 914.0-M-1 Page A-57 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ISLE_Operation* RemoveRear();

Returns the operation object at the end of the buffer and removes it from the buffer. If the
buffer is empty returns NULL.

const ISLE_Operation* Front() const;

Returns a pointer to the first object in the buffer, without changing the buffer content.

void Clear();

Remove and delete all stored objects.

Iterating through the transfer buffer.

The following methods define a simple iterator for the transfer buffer. Iteration is always
from the first to the last element stored.

void Reset();

Resets the iterator to the beginning of the buffer.

bool MoreData() const;

Returns true if more objects are stored in the buffer; i.e., the next call to Next() will return
an object. If the iterator has reached the end of the buffer, returns false.

const ISLE_Operation* Next();

Returns the object at the position of the iterator and advances the iterator by one.

Code Example for iteration through the buffer (pbuf is a pointer to the buffer):

const ISLE_Operation* poperation = 0;
pbuf->Reset();
while (buf->MoreData()) {
 poperation = buf->Next();
 // do something with the object
}

Default Setting of Operation Parameters after Creation

Argument Created directly

maximum buffer size 1

current size 0

Checking of Invocation Parameters
No checks are defined.

CCSDS 914.0-M-1 Page A-58 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6 INTERFACES PROVIDED BY SEVERAL COMPONENTS

A6.1 CONTROL OF INTERFACE BEHAVIOR

A6.1.1 Sequential Flows of Control

Name ISLE_Sequential
GUID {D020B008-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_Sequential.H

The interface is used to control processing of a component providing the behavior
‘Sequential Flows of Control’ as defined in 3.7.2.

Processing of the component is started with the method StartSequential() and
stopped by TerminateSequential(). StartSequential() returns as soon as
processing of the component has started.

The event monitor (interface ISLE_EventMonitor) is used by the component to register
events on which the component implementing this interface will wait. The timer handler
(interface ISLE_TimerHandler) is used by the component to start timers and register a
timeout processor to be called when the timer expires.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_EventMonitor;
interface ISLE_TimerHandler;

#define IID_ISLE_Sequential_DEF { 0xd020b008, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Sequential : IUnknown
{
 virtual HRESULT
 StartSequential(ISLE_EventMonitor* pmonitor,
 ISLE_TimerHandler* ptimerhandler) = 0;
 virtual HRESULT
 TerminateSequential() = 0;
};

Methods
HRESULT StartSequential(ISLE_EventMonitor* pmonitor,
 ISLE_TimerHandler* ptimerhandler);

Starts processing of the component.

CCSDS 914.0-M-1 Page A-59 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
pmonitor reference to the event monitor the component shall use for

monitoring external events
ptimerhandler reference to the timer handler the component shall use

Result codes
S_OK processing of the component has started
SLE_E_DEGRADED not all of the proxies linked to the service element could be

started (applies only for the service element)
SLE_E_CONFIG configuration has not been performed or has not completed

successfully
E_INVALIDARG either the event monitor or the timer handler are missing
SLE_E_STATE operation of the component has already been started
E_FAIL operation could not be started because of any other problem

HRESULT TerminateSequential();

Terminates processing of the component.

Result codes
S_OK processing of the component will terminate
SLE_E_STATE operation of the component has not been started

CCSDS 914.0-M-1 Page A-60 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6.1.2 Event Monitor

Name ISLE_EventMonitor
GUID {D020B009-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_EventMonitor.H

Objects implementing this interface provide the means to register and de-register external
events, which the object will monitor. When an event is detected, the object will call the
method ProcessEvent() of the interface ISLE_EventProcessor passed as
argument to the event registration method. If, for any reason the object is no longer able to
monitor an event, it calls the method MonitorAbort() of the event processor.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_EventProcessor;

#define IID_ISLE_EventMonitor_DEF { 0xd020b009, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_EventMonitor : IUnknown
{
 virtual HRESULT
 AddEvent(const SLE_EventHandle& handle,
 ISLE_EventProcessor* pprocessor) = 0;
 virtual HRESULT
 RemoveEvent(const SLE_EventHandle& handle) = 0;
};

Methods
HRESULT AddEvent(const SLE_EventHandle& handle,
 ISLE_EventProcessor* pprocessor);

Registers the event identified by the event handle and the event processor that will process
the event.

Arguments
handle the event handle, describing the event according to platform

specific conventions
pprocessor pointer to the interface of the event processor that shall be

invoked when the event is detected

CCSDS 914.0-M-1 Page A-61 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK the event has been registered
SLE_E_OVERFLOW the number of registered events exceeds the capabilities of the

event monitor
SLE_E_DUPLICATE the event is already registered
E_FAIL the request fails because of a further unspecified error

HRESULT RemoveEvent(const SLE_EventHandle& handle);

Removes a previously registered event and its event handler from the event monitor.

Arguments
handle the event handle, describing the event according to platform

specific conventions

Result codes
S_OK the event has been de-registered
SLE_E_UNKNOWN the event is not registered

CCSDS 914.0-M-1 Page A-62 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6.1.3 Event Processor

Name ISLE_EventProcessor
GUID {D020B00A-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_EventProcessor.H

The event processor handles an event detected by the event monitor with which it has been
registered.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>

#define IID_ISLE_EventProcessor_DEF { 0xd020b00a, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_EventProcessor : IUnknown
{
 virtual void
 ProcessEvent(const SLE_EventHandle& handle) = 0;
 virtual void
 MonitorAbort(const SLE_EventHandle& handle) = 0;
};

Methods

void ProcessEvent(const SLE_EventHandle& handle);

Processes the event passed as argument.

Arguments
handle the event handle describing the event that has occurred

void MonitorAbort(const SLE_EventHandle& handle);

The method is called when the event handler is no longer able to monitor the event.

Arguments
handle the event handle that had been registered

CCSDS 914.0-M-1 Page A-63 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6.1.4 Timer Handler

Name ISLE_TimerHandler
GUID {0E265180-D4BF-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_TimerHandler.H

Objects implementing this interface provide the means to start a timer and register a timeout
processor. When the timer expires, the method ProcessTimeout() of the timeout
processor is called. The interface also provides a method to cancel a running timer and to
restart a timer that is already running. If for any reason the timer handler aborts a running
timer by itself it calls the method HandlerAbort() of the timeout processor.

A running timer is identified by a timer identifier. This is an opaque type, with which the
client must not associate any specific meaning. A specific identifier is only valid as long as
the associated timer is running.

As an option, an invocation identifier can be associated with every activation of a timer. This
invocation identifier is passed to the matching call of the method ProcessTimeout() of
the timeout processor.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_TimeoutProcessor;

#define IID_ISLE_TimerHandler_DEF { 0xe265180, 0xd4bf, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } };

interface ISLE_TimerHandler : IUnknown
{
 virtual HRESULT
 StartTimer(int timeout,
 ISLE_TimeoutProcessor* pprocessor,
 SLE_TimerId& timer,
 int invocationId = 0) = 0;
 virtual HRESULT
 CancelTimer(SLE_TimerId timer) = 0;
 virtual HRESULT
 RestartTimer(SLE_TimerId timer,
 int timeout,
 int invocationId = 0) = 0;
};

CCSDS 914.0-M-1 Page A-64 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
HRESULT StartTimer(int timeout,
 ISLE_TimeoutProcessor* pprocessor,
 SLE_TimerId& timer,
 int invocationId);

Starts a timer and registers a timeout processor to be called when the timer expires.

Arguments
timeout the timeout value in seconds
pprocessor pointer to the interface of the timeout processor that shall be

invoked when the timer expires
timer the identifier for the timer returned to the caller
invocationId identifier of the timer activation passed to the matching call of

the timeout processor

Result codes
S_OK the timer has been started
SLE_E_OVERFLOW the number of timers exceeds the capabilities of the timer

handler
SLE_E_TIME the time specified cannot be handled
E_FAIL the request fails because of a further unspecified error

HRESULT CancelTimer(SLE_TimerId timer);

Cancels a previously started timer.

Arguments
timer the timer id returned from the call to StartTimer()

Result codes
S_OK the timer has been cancelled
SLE_E_UNKNOWN the timer is not running

HRESULT RestartTimer(SLE_TimerId timer, int timeout,
 int invocationId);

Cancels and subsequently starts the timer identified in the first argument. Returns an error if
the timer is not active.

Arguments
timer the timer id returned from the call to StartTimer()
timeout the timeout value in seconds
invocationId identifier of the timer activation passed to the matching call of

the timeout processor

CCSDS 914.0-M-1 Page A-65 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK the timer has been restarted
SLE_E_UNKNOWN the timer is not active
SLE_E_TIME the time specified cannot be handled
E_FAIL the request fails because of a further unspecified reason

A6.1.5 Timeout Processor

Name ISLE_TimeoutProcessor
GUID {0E265181-D4BF-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_TimeoutProcessor.H

The timeout processor is called when a timer expires.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>

#define IID_ISLE_TimeoutProcessor_DEF { 0xe265181, 0xd4bf, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } };

interface ISLE_TimeoutProcessor : IUnknown
{
 virtual void
 ProcessTimeout(SLE_TimerId timer,
 int invocationId) = 0;
 virtual void
 HandlerAbort(SLE_TimerId timer) = 0;
};

Methods

void ProcessTimeout(SLE_TimerId timer, int invocationId);

Processes a timeout.

Arguments
timer the timer id returned when the timer was started
invocationId identifier of the timer activation passed to the call of the

interface ISLE_TimerHandler, which caused this method
invocation

CCSDS 914.0-M-1 Page A-66 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

void HandlerAbort(SLE_TimerId timer);

The method is called when the timer handler has aborted the timer for whatever reason.

Arguments
timer the timer id returned when the timer was started

A6.1.6 Concurrent Flows of Control

Name ISLE_Concurrent
GUID {7B425726-D32D-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_Concurrent.H

The interface is used to control processing of a component providing the behavior
‘Concurrent Flows of Control’ as defined in 3.7.3.

Processing of the component is started with the method StartConcurent(). The
method checks the configuration and returns as soon as processing within the component has
been started.

Synopsis
#include <SLE_SCM.H>

#define IID_ISLE_Concurrent_DEF { 0x7b425726, 0xd32d, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Concurrent : IUnknown
{
 virtual HRESULT
 StartConcurrent() = 0;
 virtual HRESULT
 TerminateConcurrent() = 0;
};

Methods

HRESULT StartConcurrent();

Starts processing of the component.

CCSDS 914.0-M-1 Page A-67 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK processing of the component has started
SLE_E_DEGRADED not all of the proxies linked to the service element could be

started (applies only for the service element)
SLE_E_CONFIG configuration has not been performed or has not completed

successfully
SLE_E_STATE operation of the component has already been started
E_FAIL operation could not be started because of any other problem

HRESULT TerminateConcurrent();

Terminates processing of the component.

Result codes
S_OK processing of the component will terminate
SLE_E_STATE operation of the component has not been started

CCSDS 914.0-M-1 Page A-68 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6.2 CONTROL OF TRACES

Name ISLE_TraceControl
GUID {D020B00B-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_TraceControl.H

The interface is exported by objects that support generation of diagnostic traces. Trace
records are entered to the interface ISLE_Trace passed to the method StartTrace().
This interface is provided by the SLE Application. Trace records and the trace levels are
specified in 3.6.3.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_Trace;

#define IID_ISLE_TraceControl_DEF { 0xd020b00b, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_TraceControl : IUnknown
{
 virtual HRESULT
 StartTrace(ISLE_Trace* trace,
 SLE_TraceLevel level,
 bool forward) = 0;
 virtual HRESULT
 StopTrace() = 0;
};

Methods
HRESULT StartTrace(ISLE_Trace* ptrace,
 SLE_TraceLevel level,
 bool forward);

Starts tracing by the object that exports the interface. If the argument forward is set to
true, the object also starts tracing of associated lower layers of the API, if applicable.

Arguments
ptrace pointer to the interface to which trace records shall be passed
level the trace level that shall be applied as defined in 3.6.3
forward if set to true, tracing for lower layers of the API shall be

started as well

CCSDS 914.0-M-1 Page A-69 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK tracing started
SLE_E_STATE tracing already active
E_FAIL the request fails because of a further unspecified error

HRESULT StopTrace();

Stops a previously started trace.

Result codes
S_OK tracing stopped
SLE_E_STATE tracing not active

CCSDS 914.0-M-1 Page A-70 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A7 SLE API PROXY

A7.1 COMPONENT CREATOR FUNCTION

File <impl-id>.H

The API proxy component includes a function to create an instance and obtain a pointer to
the administrative interface. The signature of this function is defined as:

extern "C" HRESULT
 <impl-id>_CreateProxy(const GUID& iid,
 void** ppv);

where <impl-id> is replaced by the product identifier of the implementation. Note that
external ‘C’ linkage is required. The function ensures that a single instance of the proxy is
created and returns pointer to the same instance if it is called repetitively. The function
checks the argument identifying the interface and returns an error when the implementation
does not support an interface with that identifier.

Arguments
iid identifier of the required interface
ppv pointer to the requested interface of the API proxy

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported

CCSDS 914.0-M-1 Page A-71 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A7.2 SLE PROXY ADMINISTRATIVE INTERFACE

Name ISLE_ProxyAdmin
GUID {D020B00C-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_ProxyAdmin.H

The interface provides the means to configure the proxy component and to pass it the
interfaces needed operationally. All static configuration parameters needed by the proxy are
defined in a configuration file. The path name of that file is supplied to the proxy via this
interface.

In addition, the interface provides methods to register and de-register ports for a specific
service instance. These methods are used by the service element when a service instance is
created and deleted. Port registration is described in 3.2.5.

The interface finally provides a method for shutdown of the proxy.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
#include <SLE_Types.h>
interface ISLE_Locator;
interface ISLE_OperationFactory;
interface ISLE_UtilFactory;
interface ISLE_Reporter;
interface ISLE_SII;

#define IID_ISLE_ProxyAdmin_DEF { 0xd020b00c, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_ProxyAdmin : IUnknown
{
 virtual HRESULT
 Configure(const char* configFilePath,
 ISLE_Locator* plocator,
 ISLE_OperationFactory* popFactory,
 ISLE_UtilFactory* putilFactory,
 ISLE_Reporter* preporter) = 0;
 virtual HRESULT
 ShutDown() = 0;
 virtual HRESULT
 RegisterPort(const ISLE_SII& sii,
 const char* responderPort,
 SLE_PortRegId& regId) = 0;
 virtual HRESULT
 DeregisterPort(SLE_PortRegId regId) = 0;
 virtual const char*
 Get_ProtocolId() const = 0;
};

CCSDS 914.0-M-1 Page A-72 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
HRESULT Configure(const char* configFilePath,
 ISLE_Locator* plocator,
 ISLE_OperationFactory* popFactory,
 ISLE_UtilFactory* putilFactory,
 ISLE_Reporter* preporter);

Configures the proxy and passes it the basic interfaces of other components needed for
operations. As part of this method, the proxy also configures and initializes the
communications system. Any problems and errors are entered into the system log using the
interface passed as argument.

Arguments
configFilePath full path name of the proxy configuration file; the contents of

this file is implementation dependent
plocator Pointer to the locator interface for incoming calls; if no

incoming calls are to be accepted, this argument is set to NULL
popFactory pointer to the operation object factory to be used by the proxy
putilFactory pointer to the factory interface for utility objects to be used by

the proxy
preporter pointer to the reporter interface for passing of log messages and

notifications to the application

Result codes
S_OK configuration completed without errors
SLE_E_NOFILE configuration file not found
SLE_E_CONFIG errors or inconsistencies in the configuration data
SLE_E_COMMS unable to initialize communications system
E_INVALIDARG one of the input arguments is NULL
E_FAIL the request fails because of a further unspecified error

HRESULT ShutDown();

Requests the proxy to shutdown and release all resources.

Result codes
S_OK the proxy no longer exists
SLE_E_STATE operation of the proxy must be terminated first

HRESULT RegisterPort(const ISLE_SII& sii,
 const char* responderPort,
 SLE_PortRegId& regId);

CCSDS 914.0-M-1 Page A-73 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Registers a port. Port registration actions are technology and implementation dependent.
The method must be called for every new service instance responding to BIND invocations,
as the proxy may depend on this procedure.

Arguments
sii service instance identifier
responderPort logical name of the local port on which the proxy shall accept a

BIND invocation
regId registration identifier that must be passed to the proxy when the

port is de-registered; for the client the registration identifier is
an opaque type and no further meaning should be associated
with it; in particular the registration id need not be unique for
service instances

Result codes
S_OK port has been registered
SLE_E_UNKNOWN the port identifier is not defined in the configuration database
SLE_E_INVALIDID the port is not defined as a local port
SLE_E_DUPLICATE duplicate registration
E_NOTIMPL the responder role is either not supported or has been disabled

by configuration
E_FAIL the request fails because of a further unspecified error

HRESULT DeregisterPort(SLE_PortRegId regId);

De-registers a port that has been previously registered.

Arguments
regId registration identifier obtained from a previous call to

RegisterPort()

Result codes
S_OK port has been de-registered
SLE_E_UNKNOWN port was not registered
E_NOTIMPL the responder role is either not supported or has been disabled

by configuration
E_INVALIDARG the registration identifier is invalid

const char* Get_ProtocolId() const;

Returns the identifier for the protocol supported by the proxy.

CCSDS 914.0-M-1 Page A-74 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A7.3 ASSOCIATION FACTORY

Name ISLE_AssocFactory
GUID {D020B00D-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_AssocFactory.H

The interface allows creation of associations that take the initiator role for the BIND
operation. Associations created via this interface can be used for several consecutive
associations for the same service instance. When the association is no longer needed, the
proxy must be instructed to destroy the association. In addition, clients must make sure that
all references on the interface have been released.

Synopsis
#include <SLE_SCM.H>
#include <SLE_Types.h>
#include <SLE_APITypes.h>
interface ISLE_SrvProxyInitiate;
interface ISLE_SrvProxyInform;

#define IID_ISLE_AssocFactory_DEF { 0xd020b00d, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_AssocFactory : IUnknown
{
 virtual HRESULT
 CreateAssociation(const GUID& iid,
 SLE_ApplicationIdentifier srvType,
 ISLE_SrvProxyInform* pclientIf,
 void** ppv) = 0;
 virtual HRESULT
 DestroyAssociation(IUnknown* passoc) = 0;
};

Methods
HRESULT CreateAssociation(const GUID& iid,
 SLE_AppplicationIdentifier srvType,
 ISLE_SrvProxyInform* pclientIf,
 void** ppv);

Creates a new association of the specified service type, which acts as an initiator for the
BIND operation. If the proxy does not support the service type or the specified interface it
returns an error.

CCSDS 914.0-M-1 Page A-75 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
iid identifier for the interface ISLE_SrvProxyInitiate
srvType the SLE service type to be supported by the association
pclientIf pointer to the client interface
ppv pointer to the requested interface of the association

Result codes
S_OK the association object has been created
SLE_E_STATE the proxy has not been started
E_NOTIMPL the service type is not supported by the proxy
E_NOINTERFACE the interface is not supported by an association object

HRESULT DestroyAssociation(IUnknown* passoc);

Deletes an association previously created by this interface.

Arguments
passoc pointer to the association object

Result codes
S_OK the object has been destroyed
SLE_E_STATE the association is not in the state unbound
SLE_E_UNKNOWN the association is not known to the proxy
SLE_E_TYPE the association has not been created by this interface

CCSDS 914.0-M-1 Page A-76 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A7.4 SLE SERVICE PROXY INTERFACE

Name ISLE_SrvProxyInitiate
GUID {D020B00E-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_SrvProxyInitiate.H

The interface allows a client to pass SLE operation invocations and returns to an association
in the proxy for transmission to the peer system.

The association accepts any operation that is valid for the given service type, independent of
the service instance state and whether the clients acts as an SLE service user or provider. The
only checks applied are related to the state of the association.

For a description of the associated state table of an association see 4.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_Operation;
interface ISLE_ConfirmedOperation;

#define IID_ISLE_SrvProxyInitiate_DEF { 0xd020b00e, 0xccd1, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_SrvProxyInitiate : IUnknown
{
 virtual HRESULT
 InitiateOpInvoke(ISLE_Operation* poperation,
 bool reportTransmission = false,
 unsigned long seqCount = 0) = 0;
virtual HRESULT
 InitiateOpReturn(ISLE_ConfirmedOperation* poperation,
 bool report = false,
 unsigned long seqCount = 0) = 0;
virtual HRESULT
 DiscardBuffer() = 0;
 virtual SLE_AssocState
 Get_AssocState() const = 0;
};

Methods
HRESULT InitiateOpInvoke(ISLE_Operation* poperation,
 bool reportTransmission = false,
 unsigned long seqCount = 0);

Queues the operation invocation defined by the argument poperation for transmission. If
the argument reportTransmission is set to true final transmission is reported via the

CCSDS 914.0-M-1 Page A-77 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

interface ISLE_SrvProxyInform. If the operation is confirmed, the association returns
it when the associated return arrives.

Arguments
poperation the operation object containing the invocation that shall be

transmitted
reportTransmission true indicates that transmission of the PDU shall be reported
seqCount sequence count for PDUs as defined in 3.7.3

Result codes
SLE_S_TRANSMITTED the PDU has been passed to the communications system for

transmission
SLE_S_QUEUED the PDU has been queued locally for transmission
SLE_E_UNBINDING the PDU can no longer be accepted because an UNBIND

operation has already been initialized
SLE_E_INVALIDID the identifier of the peer application passed in a BIND

invocation is not defined in the configuration database
SLE_E_INVALIDPDU the operation is not supported for the service type
SLE_E_PROTOCOL the operation cannot be accepted in the current state, because

that would result in a protocol error
SLE_E_COMMS the request cannot be performed because of a communications

system failure
SLE_E_OVERFLOW the configured queuing capability has been exceeded
SLE_E_ABORTED the association has been aborted
SLE_E_SEQUENCE sequence count out of acceptable window
E_FAIL the request fails because of a further unspecified error

HRESULT InitiateOpReturn(ISLE_ConfirmedOperation* poperation,
 bool reportTransmission = false,
 unsigned long seqCount = 0);

Queues the operation return defined by the argument poperation for transmission. If the
argument reportTransmission is set to true final transmission is reported via the
interface ISLE_SrvProxyInform.

Arguments
poperation the operation object containing the invocation that shall be

transmitted
reportTransmission true indicates that transmission of the PDU shall be reported
seqCount sequence count for PDUs as defined in 3.7.3

CCSDS 914.0-M-1 Page A-78 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
SLE_S_TRANSMITTED the PDU has been passed to the communications system for

transmission
SLE_S_QUEUED the PDU has been queued locally for transmission
SLE_E_UNBINDING the PDU can no longer be accepted because an UNBIND

operation has already been initialized
SLE_E_INVALIDPDU the operation is not supported for the service type
SLE_E_PROTOCOL the operation cannot be accepted in the current state, because

that would result in a protocol error
SLE_E_COMMS the request cannot be performed because of a communications

system failure
SLE_E_OVERFLOW the configured queuing capability has been exceeded
SLE_E_ABORTED the association has been aborted
SLE_E_SEQUENCE sequence count out of acceptable window
E_FAIL the request fails because of a further unspecified error

HRESULT DiscardBuffer();

Searches the local transmission queue of operations of the type TRANSFER-BUFFER, and
deletes all objects for which transmission of data has not yet started. Returns whether any
buffer has been discarded.

Result codes
SLE_S_NOTDISCARDED no buffer deleted
SLE_S_DISCARDED at least one buffer discarded
SLE_E_STATE the request is not valid in the current state of the association

SLE_AssocState Get_AssocState() const;

Returns the current state of the association.

CCSDS 914.0-M-1 Page A-79 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8 SLE API SERVICE ELEMENT

A8.1 COMPONENT CREATOR FUNCTION

The API Service Element component includes a function to create an instance and obtain a
pointer to the administrative interface. The signature of this function is defined as:

extern "C" HRESULT
 <impl-id>_CreateServiceElement(const GUID& iid,
 void** ppv);

where <impl-id> is replaced by the product identifier of the implementation. Note that
external ‘C’ linkage is required. The function ensures that a single instance of the proxy is
created and returns the same instance if it is called repetitively. The function checks the
argument identifying the interface and returns an error when the implementation does not
support an interface with this identifier.

Arguments
iid identifier of the required interface
ppv pointer to the requested interface of the API Service Element

Result codes
S_OK the object has been created
E_NOINTERFACE the specified interface is not supported

CCSDS 914.0-M-1 Page A-80 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.2 API SERVICE ELEMENT ADMINISTRATIVE INTERFACE

Name ISLE_SEAdmin
GUID {24396FC0-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_SEAdmin.H

The interface provides the means to configure the service element component and to pass it
the interfaces needed operationally. All static configuration parameters needed by the
component are defined in a configuration file. The path name of that file is supplied to the
proxy via this interface.

Clients must first call the method Configure() and then call AddProxy() to pass a
pointer to the proxy component for every proxy that shall be supported.

The interface finally provides a method for shutdown of the service element.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_OperationFactory;
interface ISLE_UtilFactory;
interface ISLE_Reporter;
interface ISLE_ProxyAdmin;

#define IID_ISLE_SEAdmin_DEF { 0x24396fc0, 0xcd99, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_SEAdmin : IUnknown
{
 virtual HRESULT
 Configure(const char* configFilePath,
 ISLE_OperationFactory* popFactory,
 ISLE_UtilFactory* putilFactory,
 ISLE_Reporter* preporter) = 0;
virtual HRESULT
 AddProxy(const char* protocolId,
 SLE_BindRole role,
 ISLE_ProxyAdmin* pproxy) = 0;
 virtual HRESULT
 ShutDown() = 0;
};

CCSDS 914.0-M-1 Page A-81 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
HRESULT Configure(const char* configFilePath,
 ISLE_OperationFactory* popFactory,
 ISLE_UtilFactory* putilFactory,
 ISLE_Reporter* preporter);

Configures the service element component and passes it the basic interfaces of other
components needed for operations. Any problems and errors are entered into the system log
using the interface passed as argument.

Arguments
configFilePath full path name of the configuration file; the contents of this file

is implementation dependent
popFactory pointer to the operation object factory to be used by the service

element
putilFactory pointer to the factory interface for utility objects to be used by

the service element
preporter pointer to the reporter interface for passing of log messages and

notifications to the application

Result codes
S_OK configuration completed without errors
SLE_E_NOFILE configuration file not found
SLE_E_CONFIG errors or inconsistencies in the configuration data
E_INVALIDARG one of the input arguments is NULL
E_FAIL the request fails because of a further unspecified error

HRESULT AddProxy(const char* protocolId,
 SLE_BindRole role,
 ISLE_ProxyAdmin* pproxy);

Passes the proxy component to use to the service element.

Arguments
protocolId identification of the technology and mapping supported by the

proxy; this argument is required for selection of the correct
proxy when multiple proxies are configured

role the bind roles supported by the API proxy component
pproxy pointer to the administrative interface of the proxy

Result codes
S_OK proxy added
SLE_E_OVERFLOW too many proxies
SLE_E_DUPLICATE protocol identifier already used by a configured proxy
E_FAIL the request fails because of a further unspecified error

CCSDS 914.0-M-1 Page A-82 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.3 SERVICE INSTANCE LOCATOR

Name ISLE_Locator
GUID {24396FC1-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_Locator.H

The interface is provided to the proxy to obtain an interface of the type
ISLE_SrvProxyInform when a BIND invocation has been received. When an error is
returned, the proxy is expected to reject the BIND invocation.

Synopsis
#include <SLE_SCM.H>

interface ISLE_Bind;
interface ISLE_SrvProxyInform;
interface ISLE_SrvProxyInitiate;

#define IID_ISLE_Locator_DEF { 0x24396fc1, 0xcd99, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Locator : IUnknown
{
 virtual HRESULT
 LocateInstance(ISLE_SrvProxyInitiate* passociation,
 ISLE_Bind* pbindop,
 ISLE_SrvProxyInform** ppServiceInstance) = 0;
};

Methods
HRESULT LocateInstance(ISLE_SrvProxyInitiate* passociation,
 ISLE_Bind* pbindop
 ISLE_SrvProxyInform** ppServiceInstance);

Obtains and returns an interface ISLE_SrvProxyInform for use by a new association.
To locate (or create) the object implementing ISLE_SrvProxyInform, the BIND
operation is made available, which contains all information needed. The interface
ISLE_SrvProxyInitiate is made available to the object providing the returned
interface ISLE_SrvProxyInform.

If no interface can be made available returns an error and sets the output argument to NULL.
In this case the proxy is expected to reject the BIND invocation by a BIND return with a
negative response and a diagnostic corresponding to the returned error.

An implementation is not required to perform all the checks defined by the result codes in
this method. It can also accept the association and perform the checks when the BIND
invocation is passed to the interface ISLE_SrvProxyInform.

CCSDS 914.0-M-1 Page A-83 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
passociation interface provided by the association on which the BIND

invocation was received
pbindop bind operation object holding the received bind invocation
ppServiceInstance complementary interface that shall be used by the association to

forward PDUs received from the network

Result codes
S_OK a service instance has been located and is ready to accept the

BIND invocation
SLE_E_UNKNOWN the service instance identifier in the BIND invocation does not

match any available service instance
E_ACCESSDENIED the service instance does not belong to the peer application as

identified by the application identifier in the BIND operation
SLE_E_TYPE the service type specification in the BIND operation does not

match the service type in the service instance
SLE_E_TIME the scheduled provision period of the service instance has not

yet started or has expired
SLE_E_STATE the service instance is already bound
E_FAIL the request fails because of a further unspecified error

CCSDS 914.0-M-1 Page A-84 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.4 SLE SERVICE INSTANCE FACTORY

Name ISLE_SIFactory
GUID {BB4DDA2E-54CD-11d8-9CF5-0004761E8CFB}
Inheritance: IUnknown
File ISLE_SIFactory.H

The interface allows creation of service instances for a specified service type and for a
specified role (SLE service provider or SLE service user). Following creation, the service
instance must be configured using its administrative interface. When the association is no
longer needed, the service element component must be instructed to destroy the service
instance. In addition, clients must make sure that all references on all interfaces of the
service instance have been released.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
#include <SLE_Types.h>
interface ISLE_ServiceInform;

#define IID_ISLE_SIFactory_DEF { 0xbb4dda2e, 0x54cd, 0x11d8, \
 { 0x9c, 0xf5, 0x0, 0x4, 0x76, 0x1e, 0x8c, 0xfb } }

interface ISLE_SIFactory : IUnknown
{
 virtual HRESULT
 CreateServiceInstance(const GUID& iid,
 SLE_ApplicationIdentifier srvType,
 SLE_VersionNumber version,
 SLE_AppRole role,
 ISLE_ServiceInform* pclientIf,
 void** ppv) = 0;
 virtual HRESULT
 DestroyServiceInstance(IUnknown* psi) = 0;
};

Methods
HRESULT CreateServiceInstance(const GUID& iid,
 SLE_ApplicationIdentifier srvType,
 SLE_VersionNumber version,
 SLE_AppRole role,
 ISLE_ServiceInform* pclientIf,
 void** ppv);

Creates a new service instance for the requested SLE service type, supporting the requested
role (SLE service provider or SLE service user). Returns a pointer to the requested interface
of the service instance. If the component does not support the service type, the requested
role, or the requested interface identifier returns an error.

CCSDS 914.0-M-1 Page A-85 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

For service instances in the user (initiator) role the version of the SLE service must be
specified and this specification will be included into the BIND invocation. On the provider
(responder) side the version number is defined by the BIND invocation received from the
user and checked against the list of supported version numbers in the configuration database
of the API Proxy. Therefore the argument is ignored and should be set to zero.

Arguments
iid the identifier for the required interface
srvType the SLE service type to be supported by the service instance
version for the user (initiator) role defines the version number of the

SLE service type to be used; for the provider (responder) side
this argument is ignored and should be set to zero

role the role (user or provider) to be supported by the service
instance

pclientIf pointer to the interface the service instance shall use to pass
operations to the client

ppv pointer to the requested interface of the service instance

Result codes
S_OK the service instance object has been created
SLE_E_STATE the service element has not been started
SLE_E_INVALIDID the version number is zero for the role ‘user’
E_NOTIMPL the service type or the version or the role is not supported by the

service element
E_NOINTERFACE the interface is not supported by an association object

HRESULT DestroyServiceInstance(IUnknown* psi);

Destroys a service instance created by this interface.

Arguments
psi pointer to the service interface

Result codes
S_OK service instance destroyed
SLE_E_UNKNOWN the service instance is not known
SLE_E_STATE the service instance is not in the unbound state; the association

must be aborted first

CCSDS 914.0-M-1 Page A-86 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.5 SLE SERVICE INSTANCE ADMINISTRATIVE INTERFACE

Name ISLE_SIAdmin
GUID {BB4DDA31-54CD-11d8-9CF5-0004761E8CFB}
Inheritance: IUnknown
File ISLE_SIAdmin.H

The interface is provided for configuration of service instances. It can be used for instances
supporting the provider role or the user role. For instances supporting the user role not all
parameters need to be set.

Clients must specify the individual parameters using the method foreseen for the parameter.
Depending on the service type, further parameters may have to be supplied using the service
type-specific configuration interface. When all parameters have been supplied, the method
ConfigCompleted() must be called. The service instance then verifies that the
configuration is complete and consistent and performes all actions required to start nominal
operation. If the method ConfigCompleted() returns with success, the service instance
is ready for operation.

As a general precondition, configuration parameters must not be modified after a successful
return of the method ConfigCompleted(). The effect of an attempt to set a parameter
when the initial configuration has completed, is undefined.

The interface provides read access to all configuration parameters, including those defined in
the create request to the Service Instance Factory. The value returned by a call to the read
methods before configuration has been completed, is generally undefined.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
#include <SLE_Types.h>
interface ISLE_SII;
interface ISLE_Time;

#define IID_ISLE_SIAdmin_DEF { 0xbb4dda31, 0x54cd, 0x11d8, \
 { 0x9c, 0xf5, 0x0, 0x4, 0x76, 0x1e, 0x8c, 0xfb } }

interface ISLE_SIAdmin : IUnknown
{
 virtual void
 Set_ServiceInstanceId(const ISLE_SII& id) = 0;
 virtual void
 Put_ServiceInstanceId(ISLE_SII* id) = 0;
 virtual void
 Set_PeerIdentifier(const char* id) = 0;
 virtual void
 Set_ProvisionPeriod(const ISLE_Time* start,
 const ISLE_Time* stop) = 0;
 virtual void

CCSDS 914.0-M-1 Page A-87 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

 Set_BindInitiative(SLE_AppRole role) = 0;
 virtual void
 Set_ResponderPortIdentifier(const char* portId) = 0;
 virtual void
 Set_ReturnTimeout(int timeout) = 0;
 virtual HRESULT
 ConfigCompleted() = 0;
 virtual SLE_ApplicationIdentifier
 Get_ServiceType() const = 0;
 virtual SLE_VersionNumber
 Get_Version() const = 0
 virtual SLE_AppRole
 Get_Role() const = 0;
 virtual const ISLE_SII*
 Get_ServiceInstanceIdentifier() const = 0;
 virtual const char*
 Get_PeerIdentifier() const = 0;
 virtual const ISLE_Time*
 Get_ProvisionPeriodStart() const = 0;
 virtual const ISLE_Time*
 Get_ProvisionPeriodStop() const = 0;
 virtual SLE_AppRole
 Get_BindInitiative() const = 0;
 virtual const char*
 Get_ResponderPortIdentifier() const = 0;
 virtual int
 Get_ReturnTimeout() const = 0;
};

Methods
void Set_ServiceInstanceId(const ISLE_SII& id);

Sets the service instance identifier copying the input argument.

void Put_ServiceInstanceId(ISLE_SII* id);

Sets the service instance to the input argument. The argument will be deleted by the service
instance object.

void Set_PeerIdentifier(const char* id);

Sets the identifier of the peer application.

void Set_ProvisionPeriod(const ISLE_Time* start,
 const ISLE_Time* stop);

Sets the scheduled provisioning period according the start and stop times passed as
arguments. If the start time is NULL, the service instance assumes immediate start of the
provision period. If the stop time is NULL, the service instance provision period never
expires.

CCSDS 914.0-M-1 Page A-88 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

void Set_BindInitiative(SLE_AppRole role);

Specifies whether user-initiated binding or server-initiated binding shall be used.

void Set_ResponderPortIdentifier(const char* portId);

Sets the port identifier for the responding application.

void Set_ReturnTimeout(int timeout);

Sets the timeout value in which a return for confirmed operations must arrive. The timeout
argument is passed in units of seconds.

HRESULT ConfigCompleted();

Checks the configuration of the service element on completeness and consistency and
performs all actions needed to start nominal operation. The method includes checking of all
service type-specific parameters and takes into account the role (user or provider) of the
service instance. This method must not be called again after successful completion indicated
by a result code of S_OK.

Result codes
S_OK all checks passed; the service instance is ready for operation
E_NOTIMPL provider-initiated bind not supported
SLE_E_TIME inconsistent start and stop times
SLE_E_PORT the port identifier does not match the configuration or could not

be registered
SLE_E_INVALIDID invalid service instance identifier
SLE_E_STATE the service instance is already configured
SLE_E_CONFIG other, further unspecified configuration problem

SLE_ApplicationIdentifier Get_ServiceType() const;

Returns the service type supported by the service instance.

SLE_VersionNumber Get_Version() const;

Returns the version number of the service type supported by the service instance. For the
role ‘provider’ returns the value extracted from the received BIND invocation when the
service instance is bound and zero when the service instance is not bound.

CCSDS 914.0-M-1 Page A-89 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

SLE_AppRole Get_Role() const;

Returns the application role (user or provider) assumed by the service instance.

const SLE_SII* Get_ServiceInstanceIdentifier() const;

Returns the service instance identifier set in the object, or NULL if no identifier has been set.

const char* Get_PeerIdentifier() const;

Returns the peer identifier set in the service instance or NULL when not yet configured.

const ISLE_Time* Get_ProvisionPeriodStart() const;

Returns the provisioning start time set in the service instance or NULL when not yet
configured.

const ISLE_Time* Get_ProvisionPeriodStop() const;

Returns the provisioning stop time set in the service instance or NULL when not yet
configured.

SLE_AppRole Get_BindInitiative() const;

Returns the bind initiative (user-initiated or provider-initiated) set for the service instance.

const char* Get_ResponderPortIdentifier() const;

Returns the logical port identifier set in the service instance or NULL when not yet
configured.

int Get_ReturnTimeout() const;

Returns the return timeout period set in the service instance or 0 when not yet configured.

CCSDS 914.0-M-1 Page A-90 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.6 SLE SERVICE INTERFACES

A8.6.1 Service Proxy Interface

Name ISLE_SrvProxyInform
GUID {24396FC4-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_SrvProxyInform.H

The interface is provided to the proxy for transfer of operation invocations and returns on a
single association. In addition, it provides a method to signal transfer of a PDU if that has
been requested via the complementary interface ISLE_SrvProxyInitiate.

The PDUs passed via this interface are generally unchecked. The only checks performed by
the proxy are that the PDU is supported by the service type and is properly coded. Reception
of an invalid PDU via this interface shall not cause the function to be rejected. The provider
of the interface must either generate the appropriate operation return or abort the association.

Calls to this interface shall only be rejected when the client misbehaves. For instance,
passing of an invocation other than BIND in the state unbound is such an error.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_Operation;
interface ISLE_ConfirmedOperation;

#define IID_ISLE_SrvProxyInform_DEF { 0x24396fc4, 0xcd99, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_SrvProxyInform : IUnknown
{
 virtual HRESULT
 InformOpInvoke(ISLE_Operation* poperation,
 unsigned long seqCount = 0) = 0;
 virtual HRESULT
 InformOpReturn(ISLE_ConfirmedOperation* poperation,
 unsigned long seqCount = 0) = 0;
 virtual HRESULT
 PDUTransmitted(ISLE_Operation* poperation) = 0;
 virtual HRESULT
 ProtocolAbort(const SLE_Octet* diagnostic,
 size_t size) = 0;
};

CCSDS 914.0-M-1 Page A-91 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
HRESULT InformOpInvoke(ISLE_Operation* poperation,
 unsigned long seqCount = 0);

Accepts an operation invocation.

Preconditions: The invocation was received on the association and was correctly decoded

Arguments
poperation the operation object containing the invocation
seqCount sequence count for PDUs as defined in 3.7.3

Result codes
S_OK PDU accepted
SLE_E_PROTOCOL the request violates the state machine and should have been

prevented by the proxy
SLE_E_INVALIDPDU the PDU is not valid for the service type
SLE_E_SEQUENCE sequence count out of acceptable window

HRESULT InformOpReturn(ISLE_ConfirmedOperation* poperation,
 unsigned long seqCount = 0);

Accepts an operation return.

Preconditions: The return was received on the association and was correctly decoded

Arguments
poperation the operation object containing the return
seqCount sequence count for PDUs as defined in 3.7.3

Result codes
S_OK PDU accepted
SLE_E_PROTOCOL the request violates the state machine and should have been

prevented by the proxy
SLE_E_INVALIDPDU the PDU is not valid for the service type
SLE_E_UNSOLICITED the operation was not previously passed to the association by

this service instance
SLE_E_SEQUENCE sequence count out of acceptable window

HRESULT PDUTransmitted(ISLE_Operation* poperation);

Reports transmission of a PDU as requested via the interface ISLE_SrvProxyInitiate.

CCSDS 914.0-M-1 Page A-92 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
poperation pointer to the operation for which a report was requested; the

operation object may no longer exists and the pointer should not
be used for access to the operation object unless the receiver
still holds a reference to the operation object

Result codes
S_OK report accepted
SLE_E_UNSOLICITED no report had been requested

HRESULT ProtocolAbort(const SLE_Octet* diagnostic, size_t size);

Reports failure of the communications system for the association.

Arguments
diagnostic diagnostic data as provided by the data communication service
size size of the diagnostic data in bytes

Result codes
S_OK accepted
E_UNEXPECTED the service instance is not aware of an active association

CCSDS 914.0-M-1 Page A-93 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.6.2 Service Application Interface

Name ISLE_ServiceInitiate
GUID {7B425727-D32D-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_ServiceInitiate.H

The interface provides the methods to pass operation invocations and returns to a service
instance in the API Service Element. The requests are checked and an error is returned in
case of incomplete or inconsistent definitions or if the PDU is not valid in the current state of
the service instance. For the definition of the state table see section 4. A positive return code
of the methods ensures that the PDU has been queued for transmission. It does not indicate
that the PDU has been actually transmitted.

For the following special PDUs, the interface may return the code SLE_S_SUSPEND
indicating that further transfer of data shall be suspended:

a) TRANSFER DATA Invocation for forward Services;

b) TRANSFER DATA Invocation for Return Services when the delivery mode is either
complete online or offline.

The method ResumeDataTransfer() will be called on the complementary interface
ISLE_ServiceInform when data transfer is again possible.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_Operation;
interface ISLE_ConfirmedOperation;

#define IID_ISLE_ServiceInitiate_DEF { 0x7b425727, 0xd32d, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_ServiceInitiate : IUnknown
{
 virtual HRESULT
 InitiateOpInvoke(ISLE_Operation* poperation,
 unsigned long seqCount = 0) = 0;
 virtual HRESULT
 InitiateOpReturn(ISLE_ConfirmedOperation* poperation,
 unsigned long seqCount = 0) = 0;
 virtual SLE_SIState
 Get_SIState() const = 0;
};

CCSDS 914.0-M-1 Page A-94 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
HRESULT InitiateOpInvoke(ISLE_Operation* poperation,
 unsigned long seqCount = 0);

Accepts an operation invocation for transfer. If the operation is confirmed, the operation
object will be passed back via the complementary interface when the return is received.

Arguments
poperation the operation object containing the invocation
seqCount sequence count for PDUs as defined in 3.7.3

Result codes
S_OK PDU queued for transmission
SLE_S_SUSPEND PDU queued but now suspend data transfer
SLE_E_PROTOCOL the PDU cannot be accepted in the current state because that

would result in a protocol error protocol error
SLE_E_MISSINGARG at least one argument is missing in the PDU
SLE_E_INCONSISTENT the arguments in the PDU are inconsistent
SLE_E_RANGE at least one argument in the PDU is out of range
SLE_E_INVALIDID the identifier of the peer application passed in a BIND

invocation is not defined in the configuration database
SLE_E_INVALIDPDU the PDU is not valid for the service type
SLE_E_ROLE the PDU is not valid for the role of the service instance
SLE_E_SUSPENDED the PDU cannot be accepted because data transfer is currently

suspended
SLE_E_UNBINDING the PDU can no longer be accepted because an UNBIND

operation has already been invoked
SLE_E_STOPPING the PDU can no longer be accepted because a STOP operation

has already been invoked
SLE_E_ABORTED the association has been aborted
SLE_E_OVERFLOW the configured queuing capability has been exceeded; the

association has been aborted
SLE_E_SEQUENCE sequence count out of acceptable window
SLE_E_COMMS the request cannot be performed because of a communications

system failure

HRESULT InitiateOpReturn(ISLE_ConfirmedOperation* poperation,
 unsigned long seqCount = 0);

Accepts an operation return for transfer. The operation object must have been passed to the
application via the complementary interface.

Arguments
poperation the operation object containing the return
seqCount sequence count for PDUs as defined in 3.7.3

CCSDS 914.0-M-1 Page A-95 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK PDU queued for transmission
SLE_E_PROTOCOL the PDU cannot be accepted in the current state because that

would result in a protocol error protocol error
SLE_E_MISSINGARG at least one argument is missing in the PDU
SLE_E_INCONSISTENT the arguments in the PDU are inconsistent
SLE_E_RANGE at least one argument in the PDU is out of range
SLE_E_INVALIDPDU the PDU is not valid for the service type
SLE_E_ROLE the PDU is not valid for the role of the service instance
SLE_E_UNSOLICITED the operation was not previously passed to the application by

this service instance
SLE_E_UNBINDING the PDU can no longer be accepted because an UNBIND

operation has already been invoked
SLE_E_STOPPING the PDU can no longer be accepted because a STOP operation

has already been invoked
SLE_E_ABORTED the association has been aborted
SLE_E_OVERFLOW the configured queuing capability has been exceeded; the

association has been aborted
SLE_E_SEQUENCE sequence count out of acceptable window
SLE_E_COMMS the request cannot be performed because of a communications

failure

SLE_SIState Get_SIState();

Returns the current state of the service instance.

CCSDS 914.0-M-1 Page A-96 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.7 SERVICE SPECIFIC OPERATION FACTORY

Name ISLE_SIOpFactory
GUID {24396FC5-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_SIOpFactory.H

The interface defines a specialized operation object factory provided by service instances in
the API Service Element. The interface is able to create operation objects for a given service
type and service role. Operation objects created via this interface are ‘pre-configured’ using
the data specified for the service instance (see the description of the operation object
interfaces for details). Operation objects for common association management (see A5.4) are
created by all service instances.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_Operation;

#define IID_ISLE_SIOpFactory_DEF { 0x24396fc5, 0xcd99, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_SIOpFactory : IUnknown
{
 virtual HRESULT
 CreateOperation(const GUID& iid,
 SLE_OpType optype,
 void** ppv) const = 0;
};

Methods
HRESULT CreateOperation(const GUID& iid,
 SLE_OpType optype,
 void** ppv);

Creates and configures a new operation object as specified by the argument. If the interface
cannot be found, does not refer to an operation object interface, or is not supported for the
service type or role, returns an error.

Arguments
iid GUID for the interface to be returned
optype type of the operation object to be created
ppv pointer to the requested interface of the operation object

CCSDS 914.0-M-1 Page A-97 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK the operation object has been created and configured
SLE_E_STATE the service instance has not been configured
SLE_E_TYPE the operation is not supported by the service type or for the role

of the service instance (e.g., a RAF Service User application
cannot create a TRANSFER-DATA operation)

E_NOINTERFACE the interface is not supported by an operation object of the
specified type

CCSDS 914.0-M-1 Page A-98 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A9 SLE API APPLICATION INTERFACES

A9.1 SLE SERVICE INTERFACE

Name ISLE_ServiceInform
GUID {24396FC6-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_ServiceInform.H

The interface allows passing of operation invocations and returns to the SLE Application for
a single service instance. The client of this interface is expected to have checked all PDUs
that pass this interface to the level defined for the API Service Element in 3.3.5.1.2.

For data transfer for forward services and for the complete online and offline return services,
the interface additionally provides the means to signal to the application that data transfer
may continue. Suspension of data transfer is requested via the complementary interface
ISLE_ServiceInitiate.

Finally the interface provides a means to inform the application when a protocol abort occurs
and when the scheduled provision period of the service instance ends.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_Operation;
interface ISLE_ConfirmedOperation;

#define IID_ISLE_ServiceInform_DEF { 0x24396fc6, 0xcd99, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_ServiceInform : IUnknown
{
 virtual HRESULT
 InformOpInvoke(ISLE_Operation* poperation,
 unsigned long seqCount = 0) = 0;
 virtual HRESULT
 InformOpReturn(ISLE_ConfirmedOperation* poperation,
 unsigned long seqCount = 0) = 0;
 virtual void
 ResumeDataTransfer() = 0;
 virtual void
 ProvisionPeriodEnds() = 0;
 virtual HRESULT
 ProtocolAbort(const SLE_Octet* diagnostic,
 size_t size) = 0;
};

CCSDS 914.0-M-1 Page A-99 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
HRESULT InformOpInvoke(ISLE_Operation* poperation,
 unsigned long seqCount = 0);

Accepts an operation invocation. If the operation is confirmed, it shall be passed back to the
service instance via the complementary interface when the return is sent.

Arguments
poperation the operation object containing the invocation
seqCount sequence count for PDUs as defined in 3.7.3

Result codes
S_OK the invocation has been accepted
SLE_E_SEQUENCE sequence count out of acceptable window
E_FAIL further unspecified error

HRESULT InformOpReturn(ISLE_ConfirmedOperation* poperation,
 unsigned long seqCount = 0);

Accepts an operation return.

Arguments
poperation the operation object containing the return
seqCount sequence count for PDUs as defined in 3.7.3

Result codes
S_OK the invocation has been accepted
SLE_E_SEQUENCE sequence count out of acceptable window
E_FAIL further unspecified error

void ResumeDataTransfer();

Informs the application that a previously suspended data transfer activity can be resumed.

void ProvisionPeriodEnds();

Informs the application that the scheduled provision period for the service instance ends and
the service instance can be deleted.

HRESULT ProtocolAbort(const SLE_Octet* diagnostic, size_t size);

Reports failure of the communications system for the association.

Arguments
diagnostic diagnostic data as provided by the data communication service
size size of the diagnostic data in bytes

CCSDS 914.0-M-1 Page A-100 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S_OK accepted
E_UNEXPECTED the application is not aware of an active association

CCSDS 914.0-M-1 Page A-101 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A9.2 REPORTING INTERFACE

Name ISLE_Reporter
GUID {24396FC7-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_Reported.H

The interface is passed to all API components and is used to enter messages into the system
log and to notify the application of specific alarms. The types of alarms, which can be
passed to this interface, are defined in 3.6.2.3.1. An alarm is complemented by a brief 20-
character text that can be used for display.

The methods in this interface do not report the time of an event. It is expected that the time
is added by the implementation of the interface.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_SII;

#define IID_ISLE_Reporter_DEF { 0x24396fc7, 0xcd99, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Reporter : IUnknown
{
 virtual void
 LogRecord(SLE_Component component,
 const ISLE_SII* sii,
 SLE_LogMessageType type,
 unsigned long messageId,
 const char* message) = 0;
 virtual void
 Notify(SLE_Alarm alarm,
 SLE_Component component,
 const ISLE_SII* sii,
 unsigned long messageId,
 const char* message = 0) = 0;
};

Methods
void LogRecord(SLE_Component component,
 const ISLE_SII* sii,
 SLE_LogMessageType type,
 unsigned long messageId,
 const char* message);

Enters a message into the system log.

CCSDS 914.0-M-1 Page A-102 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
component the component that issues the log message
sii the service instance identifier associated with the log message

or a NULL pointer if the message is not associated with a
particular service instance

type the type of the log message (alarm or information message)
messageId the numeric identifier of the message
message an ASCII string without formatting characters

void Notify(SLE_Alarm alarm,
 SLE_Component component,
 const ISLE_SII* sii,
 unsigned long messageId,
 const char* message);

Notifies the application of a specific event.

Arguments
alarm the alarm that is notified
component the components generating the notification
sii the service instance identifier associated with the notification or

a NULL pointer if the notification is not associated with a
particular service instance

messageId the numeric identifier of the message
text an optional ASCII string of max 20 characters without

formatting characters; if no text is supplied the argument must
be set to NULL

CCSDS 914.0-M-1 Page A-103 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A9.3 TRACING INTERFACE

Name ISLE_Trace
GUID {24396FC8-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown
File ISLE_Trace.H

The interface is provided to API components to enter trace records, when tracing is started
via the interface ISLE_TraceControl.

The trace method in this interface does not report the time of an event. It is expected that the
time is added by the implementation of the interface.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE_SII;

#define IID_ISLE_Trace_DEF { 0x24396fc8, 0xcd99, 0x11d2, \
 { 0x9b, 0x44, 0x0, 0xa0, 0x24, 0x6d, 0x80, 0xdb } }

interface ISLE_Trace : IUnknown
{
 virtual void
 TraceRecord(SLE_TraceLevel level,
 SLE_Component component,
 ISLE_SII* psii,
 const char* text) = 0;
};

Methods

void TraceRecord(SLE_TraceLevel level,
 SLE_Component component,
 ISLE_SII* psii,
 const char* text);

Enters a trace record.

Arguments
level the trace level at which the record is generated
component the component that issues the trace record
psii the service instance identifier associated with the trace record or

a NULL pointer if the record is not associated with a particular
service instance

text an ASCII string with the trace information

CCSDS 914.0-M-1 Page A-104 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page A-105 October 2008

A9.4 TIME SOURCE INTERFACE

Name ISLE_TimeSource
GUID {390d3508-6c7c-11d3-a297-80954a16aa77}
Inheritance: IUnknown
File ISLE_TimeSource.H

The interface is provided to the API component ‘SLE Utilities’ by applications wishing to
provide a time source to the API. If provided, the component obtains current time from this
interface. Other API components will obtain this time via the utility interface ISLE_Time.

For the purpose of implementing timers, API components can assume that the time provided
by this interface has a constant offset to system time within the limits of the timer accuracy
required by this specification.

Synopsis
#include <SLE_SCM.H>
#include <SLE_APITypes.h>

#define IID_ISLE_TimeSource_DEF { 0x390d3508, 0x6c7c, 0x11d3, \
 { 0xa2, 0x97, 0x80, 0x95, 0x4a, 0x16, 0xaa, 0x77 } }

interface ISLE_TimeSource : IUnknown
{
 virtual SLE_Octet*
 Get_CurrentTime() const = 0;
};

Methods

SLE_Octet* Get_CurrentTime() const;

Returns the current time in CCSDS CDS format.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX B

RESULT CODES

(Normative)

B1 GENERAL

For the result codes returned by methods in SLE API interfaces this Recommended Practice
adopts the scheme defined by the COM Specification (see annex D).

The general COM result code HRESULT is a 32 bit integer, structured as shown in figure B-1.

S

31 30 29 28 16 15 0

R Facility Code

Figure B-1: Structure of Result Codes

The fields in this structure are:

S Severity field (1 bit)
0 Success
1 Error

R Reserved (2 bits, must be set to zero)
Facility indicates a group of codes
Code the individual code within a facility

COM specifies a number of general codes in the COM Facility NULL (facility code 0), of
which a subset is adopted for the SLE API. In order to ensure, that the SLE API can also be
implemented in a COM environment, specific codes defined by this Recommended Practice
are allocated to the COM Facility ITF (facility code 4), which is foreseen for interface
specific result codes. In addition, all specific codes are located above HEX 0200 to avoid
conflicts with codes allocated by COM.

Following COM conventions, the mnemonics for the result codes are defined as

<Facility>_<Severity>_<Reason>

Where <Facility> is always either empty (Facility NULL) or ‘SLE’, <Severity> is
either ‘S’ for success or ‘E’ for error and <Reason> a mnemonic for the reason.

NOTE – If <Facility> is empty, then no leading underscore (‘_’) character will be
used in front of <Severity>.

CCSDS 914.0-M-1 Page B-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The result codes adopted from the COM Facility NULL and the result codes defined by this
Recommended Practice are available in the file SLE_Result.H. This file also defines the
following useful macros also adopted from COM:

SUCCEEDED(result) returns true if the severity is ‘success’
FAILED(result) returns true if the severity is ‘error’
HRESULT_CODE(result) returns the value of the code field
HRESULT_FACILITY(result) returns the value of the facility field
HRESULT_SEVERITY(result) returns the value of the severity field
MAKE_HRESULT(sev,fac,code) constructs a HRESULT variable

The result codes returned by functions of the SLE API are defined in annex A of this
Recommended Practice and it is expected that implementations do not return any other code
than specified there, except for the following, that can always be returned by a function:

E_FAIL indicating an unspecified error
E_UNEXPECTED indicating a catastrophic failure, which is

expected to originate from a serious software
problem

In spite of this general rule, experience shows that not all cases can be tested and clients
should expect functions to return other codes and process them as a general error indication.

This Recommended Practice reserves the codes HEX 0200 through HEX 03FF for use by the
SLE API Recommended Standard and its supplemental Recommended Practice documents
for service-specific APIs. It is recommended that implementations of this Recommended
Practice allocate additional result codes in the range HEX 0400 through HEX 05FF, leaving
the codes HEX 0600 and above for use by SLE applications.

B2 SUCCESS CODES ADOPTED FROM THE COM FACILITY NULL

Mnemonic Description Code

S_OK
NOERROR
NO_ERROR

indicates success 0000

S_FALSE success, but the result is FALSE 0001

CCSDS 914.0-M-1 Page B-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

B3 ERROR CODES ADOPTED FROM THE COM FACILITY NULL

Mnemonic Description Code

E_UNEXPECTED catastrophic failure FFFF

E_NOTIMPL not implemented 0001

E_OUTOFMEMORY ran out of memory 0002

E_INVALIDARG one or more arguments are invalid 0003

E_NOINTERFACE the interface is not supported 0004

E_POINTER invalid pointer 0005

E_ABORT operation aborted 0007

E_FAIL unspecified error 0008

E_ACCESSDENIED general access denied error 0009

E_PENDING the data necessary to complete this operation are not yet
available

000A

B4 SUCCESS CODES DEFINED BY THIS RECOMMENDED PRACTICE
(FACILITY ITF)

Mnemonic Description Code

SLE_S_TRANSMITTED the PDU has been passed to the data communications system
for transmission

0200

SLE_S_QUEUED the PDU has been queued for transmission 0201

SLE_S_SUSPEND suspend data transfer from now on until further notice 0202

SLE_S_DISCARDED at least one buffer has been discarded 0203

SLE_S_NOTDISCARDED no buffer has been discarded 0204

SLE_S_EOD end of data reached 0205

SLE_S_NULL the value of an object is NULL 0206

SLE_S_LOCKED the object is currently locked and not accessible 0207

SLE_S_DEGRADED the operation is performed albeit in degraded mode 0208

SLE_S_IGNORED the request has been ignored as it is was not necessary 0209

CCSDS 914.0-M-1 Page B-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page B-4 October 2008

B5 ERROR CODES DEFINED BY THIS RECOMMENDED PRACTICE
(FACILITY ITF)

Mnemonic Description Code

SLE_E_STATE a request is not valid in the current state of the server object 0200

SLE_E_PROTOCOL a request cannot be accepted because it would cause an SLE
protocol violation

0201

SLE_E_UNBINDING an UNBIND operation has been invoked which the requester might
not yet have noticed

0202

SLE_E_STOPPING a STOP operation has been invoked, which the requester has not yet
noticed

0203

SLE_E_ABORTED the association has been aborted 0204

SLE_E_UNKNOWN the object passed is not known 0205

SLE_E_INVALIDPDU the PDU is not valid for the service type 0206

SLE_E_INVALIDID an identifier is not valid 0207

SLE_E_BADVALUE the value of an argument or operation parameter is not correctly
formatted

0208

SLE_E_MISSINGARG at least one argument or operation parameter is missing 0209

SLE_E_INCONSISTENT the arguments or operation parameters are inconsistent 020A

SLE_E_RANGE a value is out of the supported or specified range 020B

SLE_E_CONFIG configuration data are incorrect, inconsistent, or cannot be supported 020C

SLE_E_OVERFLOW general overflow condition 020D

SLE_E_SUSPENDED the PDU cannot be accepted because data transfer is currently
suspended

020E

SLE_E_DUPLICATE invalid duplication of identifiers or objects 020F

SLE_E_NOFILE the configuration file cannot be found or opened 0210

SLE_E_COMMS a communications system failure occurred while processing a request 0211

SLE_E_TYPE the type specification is not correct or arguments passed are not
valid for the type

0212

SLE_E_PORT a problem with the port identifiers exists 0213

SLE_E_TIME the time specification is not correct or a request is not valid at this time 0214

SLE_E_SEQUENCE general sequencing error 0215

SLE_E_UNSOLICITED a response was received for which no request was issued 0216

SLE_E_ROLE the requested role of the service instance is not supported or the
request is not valid for the role of the service instance

0217

SLE_E_TIMERANGE inconsistent specification of start and stop times of a period 0218

SLE_E_DIAGNOSTIC unknown or inconsistent diagnostic codes found in a PDU 0219

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX C

STRUCTURE OF THE SERVICE INSTANCE IDENTIFIER FOR
VERSION 1 OF THE SLE SERVICES RAF, RCF, AND CLTU

(Normative)

C1 INTRODUCTION

C1.1 PURPOSE AND SCOPE

This annex provides a definition of the service instance identifier to be used by the SLE API
components for version 1 of the SLE services RAF, RCF, and CLTU. This specification was
used by implementations preceding this Recommended Practice, because the required
definitions were not provided by version 1 of the CCSDS Recommended Standards for the
SLE services RAF, RCF and CLTU (references [C1], [C2] and [C3]). For later versions of
the SLE services RAF, RCF, and CLTU and for all other SLE service types, the specification
in the CCSDS Recommended Standards for SLE transfer services shall be used.

The service instance identifier is a distinguished name as defined by reference [17], which is
constructed according to the containment relationships of the managed objects in the CCSDS
Recommended Standard for SLE service management. The attributes used in the service
instance identifier, are the naming attributes of the managed objects. The values of the
naming attributes are printable strings.

The SLE API only checks the validity of the attribute identifiers and does not check
conformance to the containment relationships. These must be observed when the service
instance identifier is defined. Therefore, this annex only provides a list of defined attributes
and does not cover the containment relationships. The names of the managed objects and the
names of their naming attributes are provided for information only. They are not processed
by the API.

The API supports two formats for the service instance identifier:

a) the standard format as defined by reference [17], with the constraint that all attributes
are character strings; and

b) a standard ASCII representation defined in this annex.

Conversion between the two formats is supported.

CCSDS 914.0-M-1 Page C-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

C1.2 REFERENCES

[C1] Space Link Extension—Return All Frames Service Specification, Draft
Recommendation for Space Data System Standards, CCSDS 911.1-R-1.7, Red Book,
Issue 1.7, September 1999.

[C2] Space Link Extension—Return Channel Frames Service Specification, Draft
Recommendation for Space Data System Standards, CCSDS 911.2-R-1.7, Red Book,
Issue 1.7, September 1999.

[C3] Space Link Extension—Forward CLTU Service Specification, Draft Recommendation
for Space Data System Standards, CCSDS 912.1-R-1.99h, Red Book, Issue 1.99h,
February 2000.

C2 STRUCTURAL ELEMENTS

C2.1 STANDARD FORMAT

The standard format consists of a sequence of ‘attribute value assertions’, i.e., pairs of an
attribute identifier and an attribute value. The attribute identifier is an object identifier as
defined by ASN.1 (reference [15]).

The detailed binary format is not defined by this Recommended Practice. It is implemented
by the component SLE Utilities, which provides access to the format as defined by the
interface ISLE_SII in annex A of this Recommended Practice.

C2.2 STANDARD ASCII REPRESENTATION

The standard ASCII representation makes use of human readable abbreviations for the
attribute identifiers as defined in C3. The syntax of this representation is defined in C4.

C3 IDENTIFIERS AND ABBREVIATIONS FOR ATTRIBUTES

The Object IDentifiers (OID) and human readable abbreviations for attributes used in the
service instance identifier are specified by the following table. References to the managed
objects and the type names for attributes are provided for information only.

The object identifiers of the attributes differ only in the trailing component, which is
identified in the table. The leading part of the object identifier is defined as:

{iso (1) identified-organization (2) ccsds (0) sle-services
(9) service-management (5) attributes (2)}

CCSDS 914.0-M-1 Page C-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

This definition assumes that CCSDS will be registered by ISO directly below the node
‘identified organization’. The number 0 is an arbitrary placeholder for the value that will be
assigned to CCSDS.

As an example, the object identifier for the naming attribute of the managed object ‘Forward
CLTU Transfer Service Provided’ (f-cltu-ts-p-mo-id) contains the following sequence of
numbers:

1 2 0 9 5 2 7

Table C-1: Identifiers and Abbreviations for Attributes

Managed Object Class Naming Attribute OID Abbreviation

DataStore data-store-mo-id 1 ds

EventHandler event-handler-mo-id 2 evh

F-AOS-SpaceLinkProcessing-FG f-aos-space-link-processing-fg-mo-id 3 aos-fsl-fg

F-AOS-VC-DataInsertion-FG f-aos-vc-data-insertion-fg-mo-id 4 aos-vcdi-fg

F-CLTU-Generation-FG f-cltu-generation-fg-mo-id 5 cltugen-fg

F-CLTU-ST f-cltu-st-mo-id 6 cltu-st

F-CLTU-TS-P f-cltu-ts-p-mo-id 7 cltu

F-CLTU-TS-U f-cltu-ts-u-mo-id 8 cltu-u

F-SpaceLinkAccessService f-space-link-access-service-mo-id 9 fsl

F-SP-TS-P f-sp-ts-p-mo-id 10 fsp

F-TC-F-ST f-tc-f-st-mo-id 11 tcf-st

F-TC-F-TS-P f-tc-f-ts-mo-id 12 tcf

F-TC-F-TS-U f-tc-f-ts-u-mo-id 13 tcf-u

F-TC-SpaceLinkProcessing-FG f-tc-space-link-processing-fg-mo-id 14 fsl-fg

F-TC-VCA-ST f-tc-vca-st-mo-id 15 tcvca-st

F-TC-VCA-TS-P f-tc-vca-ts-p-mo-id 16 tcvca

F-TC-VC-Channel-Prod f-tc-vc-channel-prod-mo-id 17 ftcvc-prod

F-TC-VC-DataInsertion-FG f-tc-vc-data-insertion-fg-mo-id 18 tc-vcdi-fg

F-VC-Seg-Prod f-vc-seg-prod-mo-id 19 vcseg-prod

NotificationLog notification-log-mo-id 20 nl

R-AF-ST r-af-st-mo-id 21 raf-st

R-AF-TS-P r-af-ts-p-mo-id 22 raf

R-AF-TS-U r-af-ts-u-mo-id 23 raf-u

R-FrameDataExtraction-FG r-frame-data-extraction-fg-mo-id 24 fde-fg

CCSDS 914.0-M-1 Page C-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Managed Object Class Naming Attribute OID Abbreviation

R-FrameProcessing-FG r-frame-processing-fg-mo-id 25 fp-fg

R-MC-F-Prod r-mc-f-prod-mo-id 26 mcf-prod

R-MC-FSH-ST r-mc-fsh-st-mo-id 27 mcfsh-st

R-MC-FSH-TS-P r-mc-fsh-ts-p-mo-id 28 mcfsh

R-MC-F-ST r-mc-f-st-mo-id 29 mcf-st

R-MC-F-TS-P r-mc-f-ts-p-mo-id 30 mcf

R-MC-OCF-Prod r-mc-ocf-prod-mo-id 31 mcocf-prod

R-MC-OCF-ST r-mc-ocf-st-mo-id 32 mcocf-st

R-MC-OCF-TS-P r-mc-ocf-ts-p-mo-id 33 mcocf

R-MC-OCF-TS-U r-mc-ocf-ts-u-mo-id 34 mcocf-u

R-MC-Prod r-mc-prod-mo-id 35 mc-prod

R-MC-SHF-Prod r-mc-shf-prod-mo-id 36 mcshf-prod

R-SpaceLinkAccessService r-space-link-access-service-mo-id 37 rsl

R-SpaceLinkProcessing-FG r-space-link-processing-fg-mo-id 38 rsl-fg

R-SP-ST r-sp-st-mo-id 39 rsp-st

R-SP-TS-P r-sp-ts-p-mo-id 40 rsp

R-VC-F-Prod r-vc-f-prod-mo-id 41 vcf-prod

R-VC-FSH-Prod r-vc-fsh-prod-mo-id 42 vcfsh-prod

R-VC-FSH-ST r-vc-fsh-st-mo-id 43 vcfsh-st

R-VC-FSH-TS-P r-vc-fsh-ts-p-mo-id 44 vcfsh

R-VC-F-ST r-vc-f-st-mo-id 45 vcf-st

R-VC-F-TS-P r-vc-f-ts-p-mo-id 46 vcf

R-VC-OCF-Prod r-vc-ocf-prod-mo-id 47 vcocf-prod

R-VC-OCF-ST r-vc-ocf-st-mo-id 48 vcocf-st

R-VC-OCF-TS-P r-vc-ocf-ts-p-mo-id 49 vcocf

R-VC-OCF-TS-U r-vc-ocf-ts-u-mo-id 50 vcocf-u

R-VC-Prod r-vc-prod-mo-id 51 vc-prod

ServiceAgreement service-agreement-mo-id 52 sagr

ServicePackage service-package-mo-id 53 spack

SpacecraftChannelTree spacecraft-channeltree-mo-id 54 sctree

SpacecraftCharacteristics spacecraft-characteristics-mo-id 55 scchar

SpacecraftTracking spacecraft-tracking-mo-id 56 sctrack

CCSDS 914.0-M-1 Page C-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page C-5 October 2008

C4 SYNTAX OF THE STANDARD ASCII REPRESENTATION

The syntax of the standard ASCII representation is defined by the following grammar:

<service instance identifier> ::= <attribute-value pair>

 [‘.’ <attribute-value pair>]*

<attribute-value pair> ::= <attribute> ‘=’ <value>

<attribute> is one of the abbreviations defined in table C-1

<value> is a string of printable characters

In addition, the following rules are applied:

a) All elements of the service instance identifier are not case sensitive with respect to
comparisons.

b) The value of an attribute must not contain white space and must not contain the
characters ‘.’ and ‘=’.

c) White space may be used between elements of the identifier, e.g., before and after ‘.’ or ‘=’.

Example:

The following example presents the identifier of a RAF service instance. The attribute
values are arbitrary.

sagr=ESA-JPL-INTEGRAL.spack=routine-123.rsl=DL.rsl-fg=DL.raf=pass-21

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX D

SIMPLE COMPONENT MODEL

(Normative)

D1 INTRODUCTION

The SLE API is based on the concept of integrating independently developed components
with the SLE application. This concept has important advantages. For instance, it allows an
organization offering SLE services to provide an API Proxy component to the users for
integration into SLE user applications.

In order to simplify integration of independently developed components by a third party,
dependencies between the components must be minimized. In addition, the need for delivery
of source code and of the required building procedures should be avoided as far as possible.
Finally, there must be some means of customizing a component for the specific environment
in which it shall be deployed.

These objectives are supported by component models. However, at the time this
Recommended Practice was developed, component systems were just emerging and a
commonly accepted, platform-independent scheme was not available. Of the existing
models, the Component Object Model (COM) developed by Microsoft (see reference [J5])
was the only one that could be directly used with the C++ language. However, COM
requires a special run-time library and the presence of the COM Registry. Dependency on a
special run-time environment that might not be readily available on all platforms was not
considered acceptable for the SLE API.

Therefore, this Recommended Practice defines a very basic component model specifically for
the SLE API. For this model it adopts a limited set of design patterns and conventions from
COM. The conventions adopted are restricted to object interactions within the same address
space and exclude detection and dynamic loading of components at runtime. The latter
restriction implies that the COM library and the COM Registry are not needed.

The conventions and design patterns adopted from COM are:

a) Objects interact only via interfaces.

b) An interface is a collection of semantically related functions providing access to the
services of an object. In C++, interfaces are specified by classes containing only
public, pure virtual member functions. Interfaces can be derived from other interfaces.

c) Objects can implement more than one interface and support navigation between these
interfaces. Interfaces are identified by a Globally Unique Identifier (GUID) assigned
to every interface specification.

CCSDS 914.0-M-1 Page D-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

d) Interfaces are considered immutable once they have been published. If a
modification must be applied, a new interface with a new identifier is created.

e) The lifetime of objects is controlled by reference counting. Methods to add a
reference and to release a reference are provided by every interface.

f) To support navigation between interfaces and reference counting, every interface is
derived from the interface IUnknown, specified by COM.

g) All non-object data structures passed across component boundaries must be allocated
and de-allocated using a common memory manager that ensures consistency of
dynamic memory management.

In addition to these conventions, this Recommended Practice also adopts the scheme for
definition of result codes from COM.

It is stressed that components developed according to this Recommended Practice do not
conform to COM. Important differences to COM are listed in subsection D6. However, it is
possible to develop and use SLE API components in a COM environment. It is also possible
to write very simple COM conforming wrappers for the components conforming to this
Recommended Practice.

The Simple Component Model defined for the SLE API does not claim to cover all features
that can be expected from a full scope component model. In particular it does not support:

a) detection and dynamic loading of components;

b) distribution of components to different processes and across a network;

c) event handling;

d) persistent storage;

e) inspection of components; and

f) customization of components.

For customization, this Recommended Practice uses the traditional concept of a configuration
database, which is read by a component when a special method Configure() is called.

D2 COMPONENTS

Integration of independently developed components by a third party and substitutability is
required only for the four API components identified in this Recommended Practice, namely:

a) the component API Proxy;

b) the component API Service Element;

c) the component SLE Operations; and

d) the component SLE Utilities.

CCSDS 914.0-M-1 Page D-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Therefore, the term ‘component’ is only used for these modules. These components are of
considerable size and complexity and support a rather large number of interfaces. It is
assumed that each component makes use of several classes and creates a number of objects
during operations. Some of these objects will implement functionality, which is not directly
visible outside of the component, but others must be accessed by the application or by other
components. In the following, objects that are visible outside of a component are referred to
as ‘component objects’.

The design patterns and conventions for component objects ensure that the component
implementing them can be easily integrated with other API components into an SLE
Application program. However, there is no requirement that a component object itself be
self-contained or be individually substitutable.

It must be stressed that the concept of a component object is constrained to the external view
of a component. There is no requirement that a component object is actually implemented by
a single C++ object. A single component object may be implemented by co-operation of
several C++ objects and a single C++ object could provide the implementation of more than
one component object. This Recommended Practice makes no assumptions on the internal
design or implementation of a component.

All conventions defined in this annex only apply to component objects. Therefore,
component objects are also referred to simply as ‘objects’ in this annex.

D3 DESIGN PATTERNS AND CONVENTIONS

D3.1 COMPONENT OBJECTS AND INTERFACES

A component object interacts with entities outside its component only via interfaces. An
interface is a named set of semantically related functions providing access to the services of
the component object. The client of an object only has access to the interface of a component
object and never to the object itself.

In C++ an interface is defined by a class that only contains public, pure virtual function
members and possibly constants. The interface must not contain any data members.
Arguments of function members in an interface are restricted to:

a) basic C/C++ types;

b) C/C++ structures and arrays; and

c) references or pointers to other interfaces.

Functions in interfaces must not pass objects by value or reference of any class that is not an
interface.

CCSDS 914.0-M-1 Page D-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Interfaces may inherit from other interfaces. All interfaces are derived from the basic COM
Interface IUnknown, specified in D5.2. Inheritance of interfaces is restricted to single
inheritance.

NOTE – It is stressed that the restriction of inheritance to a single base class only applies
to interfaces and not to implementation classes.

C++ classes implement interfaces by inheriting the interface and providing an
implementation for each of the inherited function members.

D3.2 INTERFACE IDENTIFIERS AND INTERFACE VERSIONS

An interface is identified by an Interface ID (IID). The IID is a ‘Globally Unique ID’
(GUID), which is a 128 bit binary value generated from a 48-bit unique machine identifier
and UTC time. Its structure is shown in D5.1, which also contains some hints on how it can
be easily handled.

Following COM, an interface is defined to be immutable; i.e., once an interface is published
it is never changed. If an interface must be modified, or the service provided by the interface
changes, it is replaced by a new interface with a different IID. An object may or may not
continue to support the old interface, but all new functionality is provided only via the new
interface. If the old interface is no longer supported, clients requesting the interface with the
old IID will receive an error and will thus be able to detect incompatibilities.

D3.3 MULTIPLE INTERFACES OF OBJECTS

An object may provide more than one interface. Objects providing multiple interfaces
support navigation between interfaces via the method QueryInterface() defined in the
interface IUnknown. A client holding a reference to one of the interfaces implemented by
an object asks for a different interface presenting the IID of that interface. If the object also
implements that interface, it returns a pointer to it. Otherwise it returns an error.

In C++, multiple interfaces per object can be implemented using multiple inheritance, or by
referencing a special object for every interface. These implementation methods are described
in 3.6 of the COM Specification. It refers to the latter option as ‘Interface Containment’.

It is required that any query for the specific interface IUnknown always returns the same
actual pointer value, no matter through which interface derived from IUnknown
QueryInterface() is called. This requirement does not apply to other interfaces of the
object. Therefore, the pointer to IUnknown serves as the only unique identifier of the object
itself.

CCSDS 914.0-M-1 Page D-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

D3.4 OBJECT LIFETIME AND REFERENCE COUNTING

Because clients only receive references to an interface of an object and never to the object
itself, they cannot create objects by standard C++ means. A client can receive a reference to
an interface as the return value of a method called on another interface or as an output
argument of a method call.

In contrast to COM, this Recommended Practice does not include any other method to obtain
an interface, in particular it does not support class factories or the COM library function
CoCreateInstance(). For each of the four API components, a bootstrap ‘creator
function’ is defined providing a reference to a specific interface implemented by the
component. Clients can obtain further interfaces using QueryInterface(), or can
request creation of objects via special ‘factory interfaces’ defined in the API.

The lifetime of an object is determined by a reference count, which is controlled by the
methods AddRef() and Release() defined in IUnknown. Whenever a client obtains a
reference to an interface, it calls AddRef() on that interface, incrementing the reference-
count. When a client no longer needs the interface it calls Release() on the interface,
decrementing the reference-count. When all reference-counts for all interfaces of an object
are zero, the object is automatically deleted. Clients must never invoke the delete operator
on interfaces.

In addition, the following conventions apply:

a) QueryInterface() automatically calls AddRef() before returning the interface
pointer, such that the caller should not call AddRef(). The client obtaining the
interface pointer must call Release(), however.

b) Objects are usually created with a reference count of zero and the creating function
(e.g., a method of a factory interface) calls QueryInterface() to set the
reference count to one. While this is only one implementation option, all functions
creating objects must ensure that the reference count is one after creation. For the
client, the statements made for QueryInterface() apply.

Clients must not make any assumptions on how an object is implemented, and must strictly
call AddRef() and Release() on every interface. Implementation of the reference
count depends on the method used for implementation of interfaces. Objects may use a
reference-count per interface or a single reference count per object. In a multi-threaded
environment, the methods AddRef() and Release() must be implemented in a MT-safe
manner.

Further applicable rules for reference counting are defined in the COM Specification (see
3.3.2). It is stressed that adherence to these rules must be carefully verified, because any
failure to do so implies the danger of memory leaks or premature deletion of objects with
unpredictable effects.

CCSDS 914.0-M-1 Page D-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

D3.5 MEMORY MANAGEMENT

Components are free to use any memory management scheme for their internal
implementation. Depending on the platform, use of different, incompatible memory
managers by different components is not uncommon. In order to ensure that data structures
passed across component boundaries can be allocated by one component and safely de-
allocated by another component, COM provides a specific memory manager that must be
used for such data. This memory manager implements the interface IMalloc, which can be
obtained from the COM runtime.

SCM adopts this approach in principle but assigns the implementation of the memory
manager used for the SLE API to the component API Utilities. In order to allow use of the
COM memory manager in a COM environment, the SLE API memory manager provides the
interface IMalloc as well (see A4.3). However, the interface IMalloc includes methods
that cannot be easily provided with the default memory management features available on
other platforms, and implementation of the component API Utilities are not required to
implement them. This applies to the methods GetSize(), DidAlloc(), and
HeapMinimize(). Implementations may provide dummy implementations and clients
must not rely on these methods.

It is pointed out that the API supplied memory manager need not be used for objects
implementing interfaces as consistent memory management is ensured by reference counting
in this case.

The pointer to IMalloc shall be obtained by calling the method
CreateMemoryManager() of the Utility Factory.

D3.6 RESULT CODES

This Recommended Practice adopts the COM conventions for result codes returned by
interface methods. The result codes defined for the SLE API are specified in annex B.

D4 CONVENTIONS FOR SLE APPLICATIONS

Applications programs using the SLE API must adhere to the conventions defined in this
annex as clients of SLE API components. In particular, correct functioning of the API can
only be ensured if applications handle reference counting correctly and use the memory
manager supplied by the API for data structures passed to the API and received from the
API.

For reasons of consistency, the interfaces that must be implemented by applications follow
the same rules as interfaces provided by the API. This implies that the interface IUnknown
must be fully supported. However, this Recommended Practice does not define any
component objects with multiple interfaces that need to be implemented by an application.

CCSDS 914.0-M-1 Page D-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Therefore, navigation needs only be supported between an interface provided by the
application and IUnknown.

Applications must ensure that objects providing an interface for use by the SLE API are not
deleted as long as any API component still holds a reference to the interface. This
requirement can be met by implementing the reference counting scheme as described in
D3.4. Applications are not required to delete an object when the reference count becomes
zero if they use other means to handle object lifetimes.

D5 INTERFACE DEFINITION AND IDENTIFICATION

D5.1 INTERFACE IDENTIFIERS

The Globally Unique Identifier is specified by the following C structure (defined in
SLE_SCMtypes.h):

typedef struct GUID
{
 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];
} GUID;

D5.2 THE INTERFACE IUNKNOWN

The GUID for the interface IUnknown is defined as

{00000000-0000-0000-C000-000000000046}

The formal specification of the interface is provided below. It can be found in the file
SLE_SCM.H.

Synopsis
#include "SLE_RESULT.h"
#define IID_IUnknown_DEF { 0x00000000, 0x0000, 0x0000, \
 { 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46 } }

interface IUnknown
{
 virtual HRESULT
 QueryInterface(const GUID& iid, void** ppv) = 0;
 virtual unsigned long
 AddRef() = 0;
 virtual unsigned long
 Release() = 0;
};

CCSDS 914.0-M-1 Page D-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods

HRESULT QueryInterface(const GUID& iid, void** ppv);

Returns a pointer to the interface identified by the argument iid if that is supported by the
object. If the object on which the function is called does not support the interface, returns the
error code E_NOINTERFACE.

unsigned long AddRef();

Increments the reference-count for the interface on which it is called, and returns the value of
the count.

unsigned long Release();

Decrements the reference-count for the interface and returns the new value. When the
reference count for all interfaces of an object becomes zero, the object is deleted.

D6 DIFFERENCES TO COM

It is stressed once more that this Recommended Practice does not imply use of COM. It also
does not claim to define a complete object model. It only adopts a very limited subset of the
COM conventions. The following are major differences to COM:

a) Dynamic loading and linking of component servers at runtime is not supported. All
components must have been linked with the program using them. Therefore, the SLE
API does not require the COM library, or the COM Registry, or any other special
runtime environment.

b) Because all components must be linked with the program using them it requires use
of unique names at global scope within a component.

c) The Class Factory and the global function GetClassObject() are not supported.

d) All interactions between API components are local to one address space. Use of
remote procedure calls between components is not foreseen. This Recommended
Practice does not exclude that parts of a component actually reside in a different
address space.

e) The interface IMalloc is provided by the component API Utilities and might only
provide dummy implementations for the methods GetSize(), DidAlloc(), and
HeapMinimize().

f) The use of a COM-specific memory manager for allocation and release of memory
objects passed over interfaces is required only in certain cases (see A2.6). Only a
subset of the methods of the IMalloc memory manager interface are supported by
this Recommended Practice.

CCSDS 914.0-M-1 Page D-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page D-9 October 2008

g) This Recommended Practice does not foresee use of any interfaces specified by COM
other than IUnknown and IMalloc.

D7 WORKING IN A COM ENVIRONMENT

The API defined in this Recommended Practice may be implemented in a COM based
environment or integrated into an application running in a COM environment. In this case,
the specifications adopted from COM in the header files SLE_SCM.H,
SLE_SCMTypes.h and SLE_RESULT.h should be removed and replaced by an inclusion
of the original COM files.

Obviously, standard COM behavior cannot be expected from a component developed
according to this Recommended Practice. However, a COM conforming wrapper may be
easily provided by implementing a Class Factory, which uses the specific bootstrap ‘creator
function’ defined in this Recommended Practice.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX E

CONFORMANCE

(Normative)

E1 INTRODUCTION

The conformance requirements defined in E2 aim at two objectives, which are partially
conflicting:

a) ensuring a maximum of compatibility between independently developed components
to support substitutability; and

b) supporting a wide range of possible implementations, which are tailored to the actual
needs of the systems in which the API is used.

In order to support substitutability, the range of options must be minimized. On the other
hand, this Recommended Practice defines an API that supports all possible requirements an
application may have, and the need for more restricted implementations is recognized.
Examples of limited implementations include:

a) a ‘lightweight’ API for SLE service users, which only need to initiate BIND
operations;

b) a specialized API for SLE service providers, which never act as service users.

Developers might also want to constrain the range of support provided for different
configurations of processes, for use of in-process threads, or for diagnostics.

Therefore, this Recommended Practice defines a number of optional features for the
components API Proxy (see E3.1) and API Service Element (see E4.2). It must be stressed,
however, that every reduction in the scope of features provided by an implementation
reduces the scope of environments in which a component can be used. Implications of not
supporting an optional feature are described for each of the options.

Implementations may provide features that are not defined in this Recommended Practice
and may define additional interfaces for access to these features. However, a conforming
implementation must not require use of such additional features or interfaces nor depend on
additional features or interfaces provided by other components.

This Recommended Practice does not define requirements with respect to the numbers of
service instances, associations, etc., an implementation must support. Subsection E5
identifies parameters for which an implementation might impose limits. Such constraints
should be clearly specified for a conforming implementation.

CCSDS 914.0-M-1 Page E-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

In a strict sense, conformance requirements only apply to API components, and not to the
SLE Application. However, use of the API requires that the application provides the
required interfaces and uses the API as specified. Related requirements can be found in E6.

E2 CONFORMANCE REQUIREMENTS

Software products claiming conformance to this Recommended Practice must provide an
implementation of one or more of the components API Proxy, API Service Element, SLE
Operations, and SLE Utilities. For components implemented by the product, the following
conformance requirements apply:

C-1 The component API Proxy must conform to all specifications in 3.2, 3.7 and 4.4,
except for the options identified in E3.1 and the backward compatibility features
identified in E4. In addition, the component must adhere to the rules for use of
interfaces supplied by the application as defined in 3.6.

C-2 For the component API Proxy, any constraints with respect to the parameters
identified in E5.1 must be specified.

C-3 The component API Service Element must conform to all specifications in 3.3, 3.7
and 4.5, except for the options identified in E4.2 and the backward compatibility
features identified in E4. In addition, the component must adhere to the rules for use
of interfaces supplied by the application as defined in 3.6.

C-4 For the component API Service Element, any constraints with respect to the
parameters identified in E5.2 must be specified.

C-5 The component SLE Operations must conform to all specifications in 3.4, except for
the backward compatibility features identified in E4.

C-6 The component SLE Utilities must conform to all specifications in 3.5, except for the
backward compatibility features identified in E4.

C-7 Components must provide all interfaces specified for the component in annex A,
unless the interface explicitly refers to an option that is not provided by the
component.

C-8 The components API Proxy, API Service Element, and SLE Operations must support
at least one SLE transfer service type. For every supported service type the
components must conform to the specifications in the relevant supplemental
Recommended Practice for the service-specific API.

C-9 Components must be able to provide all features defined in this Recommended
Practice using the services of the other components defined in this Recommended
Practice via the interfaces defined in annex A, and must not require any additional
services or interfaces.

CCSDS 914.0-M-1 Page E-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

C-10 All components must adhere to the conventions defined in annex D to this
Recommended Practice.

C-11 It must be possible to use every component provided by a product individually in
combination with other components provided by a different conforming product, with
the restrictions identified in E3 for certain options.

C-12 If a component claims to implement an option defined in E3, the implementation
must fully conform to this Recommended Practice.

C-13 If a component claims to support backward compatibility as specified in E4, the
implementation must fully conform to this specification.

E3 OPTIONS

E3.1 API PROXY

E3.1.1 Overview

The optional features defined for the component API Proxy are summarized in table E-1.

Table E-1: Optional Features for the API Proxy

ID Option Remarks / Reference

1
Initiator role for associations At least one of the two options must

be supported (see E3.1.2) Responder role for associations

2

Support for ‘sequential flows of control’ and support for
the interface ISLE_Sequential At least one of the two options must

be supported (see E3.1.3) Support for ‘concurrent flows of control’ and support for
the interface ISLE_Concurrent

3 Operation mode for a gateway see E3.1.4

4 Routing of BIND invocations to different processes see E3.1.5

5 Diagnostic traces see E3.1.6

E3.1.2 Roles in the BIND Operation

E3.1.2.1 Options

An implementation of the component API Proxy shall support one of the following options:

PXO-1a Associations in the initiator role as specified in 3.2.4.2.1.

PXO-1b Associations in the responder role as specified in 3.2.4.2.2.

CCSDS 914.0-M-1 Page E-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

PXO-1c Associations in the initiator role and associations in the responder role.

E3.1.2.2 Implications

A proxy that does not support associations in the initiator role cannot be used by an
application that needs to initiate BIND operations.

A proxy that does not support associations in the responder role cannot be used by an
application that needs to respond to BIND invocations.

E3.1.3 Handling of Multiple Flows of Control

E3.1.3.1 Options

An implementation of the component API Proxy shall support one of the following options:

PXO-2a Support for ‘sequential flows of control’ specified in 3.2.10.2 and 3.7.2 as well as
the associated control interface ISLE_Sequential, defined in A6.1.1.

PXO-2b Support for ‘concurrent flows of control’ specified in 3.2.10.2 and 3.7.3 as well as
the associated control interface ISLE_Concurrent, defined in A6.1.6.

PXO-2c Both the ‘sequential’ and the ‘concurrent’ options and the associated control
interfaces.

If a proxy supports option PXO-2c, the implementation shall define the means by which the
interface behavior is selected.

E3.1.3.2 Implications

A proxy supporting only ‘sequential flows of control’ cannot be used by clients that do not
support this behavior for the interface to the proxy. The proxy cannot be used by clients that
do not provide the interfaces ISLE_EventMonitor and ISLE_TimerHandler.

A proxy supporting only the interface for ‘concurrent flows of control’ cannot be used in a
single-threaded environment or by clients that do not support that behavior.

CCSDS 914.0-M-1 Page E-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

E3.1.4 Operation Mode for a Gateway

E3.1.4.1 Options

The following feature is optional for a proxy implementation:

PXO-3 The ‘pass-through mode of operation’ specified in 3.2.7.

If a proxy supports option PXO-3, the implementation shall define the means by which the
pass-through mode is enabled.

E3.1.4.2 Implications

A proxy not supporting this option cannot be used within a gateway.

E3.1.5 Routing of BIND Invocations to Processes

E3.1.5.1 Options

A conforming proxy implementation must support a configuration in which the hosting
process handles all service instances for which BIND invocations are received on one or
more ports. The following configuration is an optional feature:

PXO-4 Support for a configuration in which service instances using one or more ports are
distributed to existing processes in a manner defined by the application.

E3.1.5.2 Implications

A proxy not supporting this option cannot be used in a system that requires the associated
support.

E3.1.6 Diagnostic Traces

E3.1.6.1 Options

The following feature is optional:

PXO-5 Support for diagnostic traces as defined in 3.2.9 and 3.6.3.

A proxy not supporting this option must respond with E_NOINTERFACE when the interface
ISLE_TraceControl is requested via a call to QueryInterface() on the proxy or
on an association object.

CCSDS 914.0-M-1 Page E-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

E3.1.6.2 Implications

Traces are not available if a proxy does not support this option. Tracing by a proxy is
constrained because tracing of individual associations is not possible. Simultaneous tracing
of all associations can still be controlled directly via the interface exported by the API Proxy
component itself.

E4 BACKWARD COMPATIBILITY

E4.1 GENERAL

Features specified in this specification only to support version 1 of the SLE transfer services
RAF, RCF, and CLTU are not considered mandatory. However, API components that do not
implement these features must nevertheless provide exactly the interfaces specified in annex
A of this specification. The same rule applies to the supplemental Recommended Practice
documents for the service-specific APIs for the services RAF, RCF, and CLTU.

E4.2 API SERVICE ELEMENT

E4.2.1 Overview

The optional features defined for the component API Service Element are summarized in
table E-2.

Table E-2: Optional Features for the API Service Element

ID Option Remarks / Reference

1
User role for service instances At least one of the two options must

be supported (see E4.2.2) Provider role for service instances

2 Provider-initiated binding see 1.2.2 item b)

3

Support for ‘sequential flows of control’ and support for
the interface ISLE_Sequential At least one of the two options must

be supported (see E4.2.3) Support for ‘concurrent flows of control’ and support for
the interface ISLE_Concurrent

4 Diagnostic traces see E4.2.4

E4.2.2 SLE Service User and Provider Roles

E4.2.2.1 Options

An implementation of the component API Service Element shall support one of the following
options:

CCSDS 914.0-M-1 Page E-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

SEO-1a Service instances for use by an SLE service user application (‘user role’).

SEO-1b Service instances for use by an SLE service provider application (‘provider role’).

SEO-1c Service instances for use by an SLE service user application and service instances
for use by an SLE service provider application.

E4.2.2.2 Implications

A service element that does not support service instances in the user role cannot be used by
an application that must act as an SLE service user.

A service element that does not support service instances in the provider role cannot be used
by an application that must act as an SLE service provider.

E4.2.3 Handling of Multiple Flows of Control

E4.2.3.1 Options

An implementation of the component API Service Element shall support one of the following
options:

SEO-2a Support for ‘sequential flows of control’ specified in 3.3.8.2 and 3.7.2 as well as
the associated control interface ISLE_Sequential, defined in A6.1.1.

SEO-2b Support for ‘concurrent flows of control’ specified in 3.3.8.2 and 3.7.3 as well as
the associated control interface ISLE_Concurrent, defined in A6.1.6.

SEO-2c Both the ‘sequential’ and the ‘concurrent’ options and the associated control
interfaces.

If an implementation supports option SEO-2c the implementation shall define the means by
which the interface behavior is selected by the application.

A service element may provide different options for the interface to the application and for
the interface to the proxy.

E4.2.3.2 Implications

A service element supporting only ‘sequential flows of control’ on the application interface
cannot be used by applications that do not support this behavior. The service element cannot
be used by applications that do not support the interfaces ISLE_EventMonitor and
ISLE_TimerHandler.

CCSDS 914.0-M-1 Page E-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A service element supporting only ‘sequential flows of control’ on the proxy interface,
cannot use a proxy that does not support this behavior.

A service element supporting only ‘concurrent flows of control’ on the application interface
cannot be used in a single-threaded environment or by applications, that do not support that
behavior.

A service element supporting only ‘concurrent flows of control’ on the proxy interface
cannot use a proxy not supporting that behavior.

E4.2.4 Diagnostic Traces

E4.2.4.1 Options

The following feature is optional:

SEO-3 Support for diagnostic traces as defined in 3.3.7 and 3.6.3.

A service element not supporting this option must respond with E_NOINTERFACE when the
interface ISLE_TraceControl is requested via a call to QueryInterface() on the
service element or on a service instance object.

E4.2.4.2 Implications

Traces are not available if a service element does not support this option. Tracing by a proxy
is constrained because tracing of individual associations is not possible. Simultaneous
tracing of all associations can still be controlled directly via the interface exported by the API
Proxy component itself.

E5 LIMITS

E5.1 API PROXY

An implementation of the component API Proxy may constrain the values of the parameters
identified in table E-3, as long as the minimum value indicated in the table is supported. The
minimum value is required to support any useful operation; it is expected that
implementations will generally support higher numbers.

CCSDS 914.0-M-1 Page E-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Table E-3: Parameters That May Be Constrained by a Proxy

Parameter Minimum

1 Maximum number of concurrent bound associations per process 1

2 Maximum number of concurrent bound associations in total on a system 1

3 Maximum number of ports used for outgoing BIND invocations per process. 1

4 Maximum number of ports on which an incoming BIND invocation can be received
per process

1

5 Maximum number of ports on which an incoming BIND invocation can be received
in total on a system

1

6 Maximum number of incoming PDUs that can be queued (per association / per
process)

1/1

7 Maximum number of incoming TRANSFER-DATA invocations and TRANSFER-
BUFFER invocations that can be queued (per association / per process)

1/1

8 Maximum number of outgoing PDUs that can be queued 1

9 Maximum number of pending remote returns per association 1

10 Maximum size of a PDU 100 KB

E5.2 API SERVICE ELEMENT

An implementation of the component API Service Element component may constrain the
values of the parameters identified in table E-4, as long as the minimum value indicated in
the table is supported. The minimum value is required to support any useful operation; it is
expected that implementations will generally support higher numbers.

Table E-4: Parameters That May Be Constrained by a Service Element

Parameter Minimum

1 Maximum number of service instances that can exist concurrently 1

2 Maximum number of concurrently bound service instances 1

3 Maximum number of proxies that can be supported concurrently 1

4 Maximum number of pending remote returns per service instance 1

5 Maximum number of pending local returns per service instance 1

CCSDS 914.0-M-1 Page E-9 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page E-10 October 2008

E6 SLE APPLICATIONS

E6.1 GENERAL

SLE Applications are not part of the SLE API, and therefore not subject to conformance
requirements. However, use of the API requires the application to conform to the
specifications in 3.6 and 3.7 and to provide the interfaces defined in A9, with exception of
the options defined in E6.2 and E6.3.

E6.2 HANDLING OF MULTIPLE FLOWS OF CONTROL

An application shall support the interface behavior ‘sequential’ or ‘concurrent’, or both. It
must be able to handle the control interface associated with the supported behavior.

E6.3 DIAGNOSTIC TRACES

An application is not required to provide the interface ISLE_Trace. If that interface is not
provided, that application must not invoke any of the methods defined by the interface
ISLE_TraceControl (see A6.2).

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX F

INTERACTION OF COMPONENTS

(Informative)

F1 INTRODUCTION

This annex displays a set of diagrams providing an overview on how the components
specified by the model are configured and how they interact. It does not contain any new
specifications.

Overview diagrams in subsection F2 show configuration of components and use of interfaces
within the complete API. Subsection F3 provides sequence diagrams and collaboration
diagrams for selected scenarios, including:

a) initialization, start-up, and shutdown of the API;

b) use of operation objects;

c) execution of the BIND operation on the SLE user side (user-initiated binding);

d) execution of the UNBIND operation on the SLE user side (user-initiated binding);

e) execution of the BIND operation on the SLE provider side (user-initiated binding);

f) execution of the UNBIND operation on the SLE provider side (user-initiated
binding).

The purpose of these scenarios is to explain the general concepts, not to specify details
concerning the objects involved and the actual interfaces and methods called. Therefore, the
diagrams display ‘conceptual objects’ and ‘conceptual messages’ and do not reference the
objects of the model directly. It should, however, be straightforward to map these scenarios
to the interfaces and methods specified. The interfaces used are referenced in the text where
that has been felt to be necessary.

F2 CONFIGURATION OF COMPONENTS AND INTERFACES

Figure F-1 shows how the components API Proxy and API Service Element are configured
and how they are used by the application. The relationships shown in this diagram are
actually a ‘shortcut’ of the actual relationships. Cross-component references are always
references to interfaces not to ‘component classes’.

This specification assumes that a single instance of the component class API Service Element
is used by an application. The service element is linked with one or more instances of the
component class API Proxy. Individual instances used by the service element are identified
by the attribute ‘Protocol ID’, which identifies the technology and mapping used by the

CCSDS 914.0-M-1 Page F-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

proxy. The service element routes outgoing BIND invocations to the proxy supporting the
required protocol ID. It derives the protocol ID from a table in its configuration database that
maps port identifiers to protocol IDs.

The service element manages instances of the component class API Service Instance. These
instances are created and deleted by the application. The maximum number of these
instances is not constrained by this specification, but may be constrained by an
implementation. During its complete lifetime, an object of the class API Service Instance is
associated with exactly one object of the class SLE Application Instance. In periods, in
which data are exchanged between an SLE user and an SLE provider, an object of the class
API Service Instance uses exactly one object of the class Association. During its lifetime, an
object of the class SLE Application Instance may be using several different instances of
component class Association.

An overview of the most important interfaces exported by components and used by other
components is shown in figure F-3.

Figure F-2 provides further details on the configuration of interfaces used for service
provisioning. All these interfaces provide methods to pass operation objects for invocations
(InitiateOpInvoke() and InformOpInvoke()) and returns (InitiateOpReturn()
and InformOpReturn()). ‘Initiate’ interfaces are used for invocations and returns issued
locally. The complementary ‘Inform’ interfaces are used to pass invocations and returns
received from the peer system. It should be noted, however, that the diagram does not show
all details; individual interfaces provide special methods needed only for the specific
interface.

CCSDS 914.0-M-1 Page F-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

API Proxy
(from API Proxy)

<<CoClass>>

For the implementation of the relationships
"uses", the using class holds a reference to an
interface exported by the used class and not to
the used object itself. The used object is not
visible to the using object.

API Service Element
(from API Service Element)

<<CoClass>>

1..*

Protocol ID

1

1..*

1

Protocol ID

uses

Association
(from API Proxy)

<<CoClass>>

0..*1 0..*1

manages

API Service Instance
(from API Service Element)

<<CoClass>>

0..*1 0..*1

manages

0..1

1

0..1

1

uses

SLE Application Instance
(from SLE Application)

<<CoClass>>

0..1

1

0..1

1

uses

Figure F-1: Configuration of Components

SLE Application Instance
(from SLE Application)

<<CoClass>>

API Service Instance
(from API Service Element)

<<CoClass>>

Association
(from API Proxy)

<<CoClass>>ISLE_SrvProxyInitiate
InitiateOpInvoke()
InitiateOpReturn()

<<Interface>>

ISLE_SrvProxyInform
InformOpInvoke()
InformOpReturn()

<<Interface>>
ISLE_ServiceInitiateI

InitiateOpInvoke()
InitiateOpReturn()

<<Interface>>

ISLE_ServiceInform
InformOpInvoke()
InformOpReturn()

<<Interface>>

Figure F-2: Configuration of Interfaces for Service Provisioning

CCSDS 914.0-M-1 Page F-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ISLE_ProxyAdmin
<<Interface>>

ISLE_SEAdmin
<<Interface>>

ISLE_SIFactory
<<Interface>>

ISLE_Locator
<<Interface>>

ISLE_AssocFactory
<<Interface>>

API Service Instance
<<CoClass>>

API Service Element
<<CoClass>>

0..*1 0..*1

manages

SLE Application Instance
<<CoClass>>

Association
<<CoClass>>

API Proxy
<<CoClass>>

0..*1 0..*1

manages

ISLE_SrvProxyInitiate
<<Interface>>

ISLE_SIAdmin
<<Interface>>

ISLE_ServiceInitiate
<<Interface>>

ISLE_SrvProxyInform
<<Interface>>

ISLE_ServiceInform
<<Interface>>

Application Entity
<<Entity>>

Figure F-3: Interaction of API Components

CCSDS 914.0-M-1 Page F-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

F3 SCENARIOS

F3.1 INITIALIZATION AND SHUTDOWN OF THE API

F3.1.1 General

Figure F-4 shows the sequence of actions that are required for start-up and shutdown of the API.

Application SLE Utilities SLE API Service API Proxy
Operations Element

1: Create

2: Create

3: Create

4: Create

6: Configure

5: Configure

7: Add Proxy

8: Start

9: Start

10: Terminate

11: Terminate

14: Shut Down

15: ShutDown

12: Release Factory

13: Release Factory

CREATE

CONFIGURE

START
OPERATION

STOP
OPERATION

DELETE

Figure F-4: Initialization and Shutdown

CCSDS 914.0-M-1 Page F-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Start-up of the API is performed in three stages: creation; configuration; start of operation.
Orderly shutdown of the API is performed in two steps: stop of operation; deletion.

F3.1.2 Creating the API

The application must create instances of every API component by a call to the creator
function of the component (steps 1-2-3-4). The sequence of these steps is generally not
important, with the exception that creation of the component SLE Operations requires a
reference to the SLE Utility Factory as input argument. If more than one proxy is used, each
of these proxies must be created.

F3.1.3 Configuring the API

The application must configure all instances of the components API Service Element (step 5)
and API Proxy (step 6), passing the name of the configuration file for the component and
references to interfaces of the other components. Configuration is completed by linking the
API Service Element with all instances of the component API Proxy (step 7).

F3.1.4 Starting the API

After successful configuration, the application must start operation of the API by a call to the
start method of the API Service Element (step 8). The API Service Element then starts all
proxies with which it has been linked (step 9). Depending on the configuration, the API will
now start listening for incoming connect requests and will accept creating and binding of
service instances.

F3.1.5 Stopping the API

To stop operation of the API, the application calls the terminate method of the API Service
Element (step 10), which in turn calls the terminate method of all proxies which it has started
(step 11). The terminate-method aborts all current activities. After completion of the
method, the API is in the state it was after configuration.

F3.1.6 Deleting the API

To release all resources held by the API and to delete the API components, the application
must release all references it may still hold on API interfaces. In particular it must release
the operation object factory interface and the utility factory interface (steps 12-13). The
application then calls the method ShutDown() on the service element and all proxy
instances (steps 14-15). As part of the method ShutDown() the service element and the
proxy release all references to interfaces of other components they hold, delete all internal
objects, and release all resources.

CCSDS 914.0-M-1 Page F-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

F3.2 USE OF OPERATION OBJECTS

F3.2.1 General

Use of operation objects within the API is shown by the collaboration diagram in figure F-5
and the sequence diagram in figure F-6. These two diagrams are identical with respect to the
contents; they only differ in the way the scenario is presented.

The scenario presents processing of a confirmed operation by the API. The operation is
requested by the INVOKER on the left-hand side of the diagrams and performed by the
PERFORMER on the right-hand side. Objects on the invoker side are marked by ‘(I)’ and
objects on the performer side by ‘(P)’.

To invoke an operation, the application creates an operation object of the required type using
the interface ISLE_SIOpFactory provided by the service instance (step 1). It could also
use the operation object factory, but the service instance provides the additional service to
initialize the parameters according to its own configuration.

The application then sets the invocation parameters using the interface provided by operation
object (step 2) and passes a reference to the operation object to the service instance via the
interface ISLE_ServiceInitiate (step 3).

CCSDS 914.0-M-1 Page F-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Application
(I)

Service
Instance (I)

Association
(I)

NETWORK

Operation
Object (I)

Operation
Object (P)

Association
(P)

Service
Instance (P)

Application
(P)

INVOKER PERFORMER

1: Create
2: Set Invocation Parameters
26: Read Return Parameters

3: Operation Invocation

25: Operation Return

4: Check / Add Parameters
24: Check Return Parameters

5: Operation Invocation

23: Operation Return

6: Read Invocation Parameters
22: Set Return Parameters

7: Send PDU

21: Operation Return

8: Operation Invocation

20: Send PDU

9: Create
10: Set Invocation Parameters
19: Read Return Parameters

11: Operation Invocation

18: Operation Return

12: Check Invocation Parameters
17: Check Return Parameters

13: Operation Invocation

16: Operation Return

14: Read Invocation Parameters
15: Set Return Parameters

Figure F-5: Collaboration Diagram for Use of Operation Objects

The service instance verifies the validity of the invocation in its current state, checks the
parameters, adds the parameters it handles, places the reference on a list of pending remote
returns, and passes the reference to the association via the interface
ISLE_SrvProxyInitiate (steps 4-5). It also starts a return timer and associates that
with the operation object.

The association on the invoker side reads the invocation parameters from the operation
object, encodes the data, constructs the PDU, and transmits it to the peer proxy on the
performer side (steps 6-7). The association memorizes the operation object on a list of
pending returns.

CCSDS 914.0-M-1 Page F-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Application (I) Service
Instance (I)

Association
(I)

NETWORK Operation
Object (P)

Association
(P)

Service
Instance (P)

Application (P)Operation
Object (I)

1: Create

2: Set Invocation Parameters

3: Operation Invocation
4: Check / Add Parameters

5: Operation Invocation

6: Read Invocation Parameters

7: Send PDU

8: Operation Invocation

9: Create

10: Set Invocation Parameters
11: Operation Invocation

12: Check Invocation Parameters

13: Operation Invocation

14: Read Invocation Parameters

15: Set Return Parameters

16: Operation Return

17: Check Return Parameters

18: Operation Return

19: Read Return Parameters

20: Send PDU

21: Operation Return

22: Set Return Parameters

23: Operation Return

24: Check Return

25: Operation

26: Read Return

INVOKER PERFORMER

Figure F-6: Sequence Diagram for Use of Operation Objects

When receiving an invocation PDU, the association on the performer side creates the
operation object using the operation object factory. It decodes the PDU, passes the
parameters to the operation object and passes a reference to the operation object to the
service instance via the interface ISLE_SrvProxyInform (steps 8-9-10-11).

CCSDS 914.0-M-1 Page F-9 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The service instance verifies the validity of the invocation in its current state, checks the
parameters, places the reference on a list of pending local returns and passes the reference to
the application via the interface ISLE_ServiceInform (steps 12-13). For certain
operations, the service instance performs the operation itself, but in this scenario it is
assumed that the operation is performed by the application.

The application reads the invocation parameters from the operation object, performs the
operation, stores the return parameters to the operation object, and passes the reference to the
operation object to the service instance via the interface ISLE_ServiceInitiate (steps 14-
15-16).

The service instance verifies the validity of the return in its current state, checks the
parameters, removes the reference from the list of pending local returns and passes the
reference to the association (steps 17-18).

The association on the performer side reads the return parameters from the operation object,
encodes the data, constructs the PDU, and transmits it to the peer proxy on the invoker side
(steps 19-20).

On the invoker side the association decodes the PDU, locates the operation object holding the
invocation by means of the invocation identifier, and stores the return parameters to that
object. It removes the object from the list of pending returns and passes the reference to the
service instance via the interface ISLE_SrvProxyInform (steps 21-22-23).

The service instance verifies the validity of the return in its current state, checks the
parameters, cancels the return timer, removes the reference from the list of pending remote
returns, and passes the reference to the application (steps 24-25).

The application can now read the return parameters from the operation object (step 26).

To ensure proper memory management, the methods AddRef() and Release() must be
called on the interface of the operation object as described in the following for the invoker
and the performer side. Reference counting and the methods AddRef() and Release()
are explained in annex D.

F3.2.2 Invoker Side

a) When the application creates the operation object in step 1 the reference count is set
to one by the factory.

b) The service instance calls AddRef() when receiving the reference in step 3, setting
the reference count to 2.

c) The association calls AddRef() when receiving the reference in step 5, setting the
count to 3.

d) The association calls Release() after performing step 23, setting the count to 2.

CCSDS 914.0-M-1 Page F-10 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

e) The service element calls Release() after performing step 25, setting the count to 1.

f) The application calls Release() when it no longer needs the operation object.
This call sets the count to zero and automatically deletes the operation object.

F3.2.3 Performer Side

a) When the association creates the operation object in step 9 the reference count is set
to one by the factory.

b) The service instance calls AddRef() when receiving the reference in step 11, setting
the reference count to 2.

c) The application calls AddRef() when receiving the reference in step 13, setting the
count to 3.

d) The application calls Release() after performing step 16, setting the count to 2.

e) The service element calls Release() after performing step 28, setting the count to 1.

f) The association calls Release() after performing step 19. This call sets the count
to zero and automatically deletes the operation object.

F3.3 USER SIDE BINDING

Figure F-7 shows a scenario in which an SLE user application creates a service instance and
then binds the service instance with the provider. For processing of the service element, the
scenario shows one specific implementation option, where the service instance creates an
association as part of the BIND operation. An implementation might also create the
association when the service instance is created. The scenario does not include error cases.

The application creates the service instance using the interface ISLE_SIFactory exported
by the API Service Element (step 1). Before the service instance can be bound, it must be
configured, passing it the parameters set by service management (step 2). When all
parameters have been set the application informs the service instance, which checks the
configuration (step 3).

CCSDS 914.0-M-1 Page F-11 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Application API Service
Element

Service
Instance

API Proxy Association NETWORK

1: Create Service Instance

2: Configure

3: Config Completed

4: Bind Invocation 5: Create Association

6: Bind Invocation

7: Bind Invocation

8: Bind Return
9: Bind Return

10: Bind Return

Figure F-7: User Side Binding (User Initiated Bind)

When the service instance has been configured it can be bound. The application requests
binding by passing a BIND invocation via the interface ISLE_ServiceInitiate (step
4). The service instance creates a new association using the interface
ISLE_AssocFactory exported by the API Proxy and forwards the BIND invocation to
the association via the interface ISLE_SrvProxyInitiate (steps 5-6). The association
establishes a connection to the provider, encodes the BIND invocation arguments, and
transmits the BIND invocation PDU (step 7). As indicated in the diagram, this step is not
necessarily performed within the thread of control in which the association received the
BIND invocation. The association might also transmit the BIND invocation PDU as part of
the connection establishment procedure.

When the BIND return arrives, it is passed through the layers of the API as described for
standard operation processing in F3.2 (steps 8-9-10). The state of the association and of the
service instance are set to ‘bound’.

CCSDS 914.0-M-1 Page F-12 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

F3.4 USER SIDE UNBINDING

The scenario shown in figure F-8 describes processing of the UNBIND operation on the user
side for user-initiated binding. For processing of the service element, the scenario assumes
that the service instance releases the association as part of the UNBIND operation. An
implementation might also retain the association and use it again if the service instance is re-
bound. The scenario also assumes that the application does not intend to re-bind, but releases
the service instance after unbinding. Component internal activities are indicative only and
are displayed in parentheses to highlight this fact. Error cases are not covered.

Application API Service Service API Proxy Association NETWORK
Element Instance

1: Unbind Invocation
2: Unbind Invocation

3: Unbind Invocation

4: Unbind Return
5: Unbind Return

6: Unbind Return

7: Release

8: Destroy Association

10: Release

9: (Release)

11: Destroy Service Instance

12: (Release)

UNBIND

DELETE
SERVICE
INSTANCE

Figure F-8: User Side Unbinding (User Initiated Bind)

The UNBIND invocation is passed through the layers of the API as described for standard
processing of operations in F3.2 (steps 1-2-3). As indicated in the diagram, the association
might process step 3 at a later time, e.g., after transmission of PDUs that are queued for
transmission. The association might also transmit the BIND invocation PDU as part of the
connection release procedure.

Reception of the UNBIND return from the network interface concludes connection release.
The association sets its state to ‘unbound’ and forwards the UNBIND return to the service
element (steps 4-5).

CCSDS 914.0-M-1 Page F-13 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The service instance sets its state to ‘unbound’ and forwards the return to the application
(step 6). It then releases the interface of the association and requests the API Proxy to
destroy the association via the interface ISLE_AssocFactory, which causes the proxy to
release the association object and any resources that might be allocated to it (steps 7-8-9).

To delete the service instance the application releases the interface of the service instance and
requests the API Service Element to destroy the service instance via the interface
ISLE_SIFactory (steps 10-11). The service element releases the service instance object and
any resources that may be allocated to it (step 12).

F3.5 PROVIDER SIDE BINDING

Creation of a service instance and subsequent processing of a BIND invocation by an SLE
service provider for user-initiated binding is shown in figure F-9. Component internal
activities are indicative only and are displayed in parentheses to highlight this fact. Error
cases are not covered.

Application API Service Service Association API Proxy NETWORK
Element Instance

1: Create Servcie Instance

5: BIND Invocation

10: Bind Return

11: Bind Return

12: Bind Return

2: Configure

3: Config Completed
4: Register Port

6: (Create)
7: Locate Instance

8: Bind Invocation
9: Bind Invocation

Figure F-9: Provider Side Binding (User Initiated Bind)

CCSDS 914.0-M-1 Page F-14 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The application creates the service instance using the interface ISLE_SIFactory exported
by the API Service Element (step 1). Then the application configures the service instance,
passing it the parameters set by service management (step 2). When all parameters have
been set the application informs the service instance, which checks the configuration and
registers the port with the API Proxy (steps 3-4).

When receiving a BIND invocation from the network interface, the API Proxy creates a new
association for the service type requested in the PDU and passes the BIND invocation to that
object (steps 5-6). The association performs initial checks and then informs the API Service
Element via the interface ISLE_Locator passing it the BIND invocation PDU and a
reference to its interface ISLE_SrvProxyInitiate (step 7).

If the service element can locate the service instance and has successfully performed all
checks it returns a reference to the interface ISLE_SrvProxyInform of the service
instance. The association passes the BIND invocation to the service instance using that
interface (step 8). The service instance finally forwards the BIND invocation to the
application (step 9).

The BIND return is passed through the layers of the API as described for standard operation
processing in F3.2 (steps 10-11-12). For a BIND return with a positive result the service
instance sets its state to ‘ready’; the association completes the connection establishment
procedure and sets its state to ‘bound’.

F3.6 PROVIDER SIDE UNBINDING

Figure F-10 shows a scenario where a service instance on a provider system is being
unbound (assuming user-initiated binding) and subsequently deleted by the application,
because the ‘unbind reason’ is set to ‘end’. Component internal activities are indicative only
and are displayed in parentheses to highlight this fact. Error cases are not covered.

An UNBIND invocation received from the network interface is passed through the layers of
the API as described for standard operation processing in F3.2 (steps 1-2-3). The association
and the service instance both set their state to ‘unbind pending’.

The application eventually issues the UNBIND return (step 4). The service instance sets its
state to ‘unbound’ and forwards the return to the association. Subsequently it releases the
interface of the association to which it holds a reference (steps 5-6). The association
completes the connection release procedure and informs the API Proxy that the association
has completed (steps 7-8). The API Proxy releases the association object and all resources
that might be allocated to the association (step 9).

The application deletes the service instance when it is informed that the scheduled provision
period has ended (step 10). Note that the API issues this notification also when the unbind
reason is set to ‘end’.

CCSDS 914.0-M-1 Page F-15 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page F-16 October 2008

To delete the service instance, the application releases the interface to which it holds a
reference and then instructs the API Service Element to destroy the service instance via the
interface ISLE_SIFactory (steps 11-12).

The service element instructs the service instance to de-register its port from the API Proxy
and then releases the service instance object and any resources that may be allocated to it
(steps 13-14-15).

Application Service
Instance

API Service
Element

Association API Proxy NETWORK

1: Unbind Invocation
2: Unbind Invocation

3: Unbind Invocation

4: Unbind Return
5: Unbind Return

7: Unbind Return

12: Destroy Service Instance

15: (Release)

13: (Deregister)
14: Deregister Port

11: Release

UNBIND

DELETE
SERVICE
INSTANCE

8: (Completed)

9: (Release)

6: Release

10: Provision Period Ends

Figure F-10: Provider Side Unbinding (User Initiated Bind)

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX G

INTERFACE CROSS REFERENCE

(Informative)

G1 INTRODUCTION

This annex provides a cross-reference between interfaces by listing, for each of the API
components and for the SLE Application:

a) the interfaces exported by the component (or the application);

b) the potential clients of the interface;

c) he interfaces required by the component (or the application);

d) the methods that can be used to obtain a reference to the interface;

e) the potential suppliers of the interface.

It is stressed that an implementation of a component should not make any assumption about
the client of an exported interface or the supplier of a required interface. This information is
supplied for the only purpose to verify completeness and consistency of the API
specification.

Interfaces of individual operation objects exported by the component SLE Operations, and
interfaces of individual utility objects exported by the component SLE Utilities, are not
specifically considered. Because handling of the interfaces is identical for all these objects,
the tables reference these interfaces by ‘interfaces of operation objects’ and ‘interfaces of
utility objects’.

Clients (column marked ‘Clients’ in the table header) and suppliers (column marked ‘S’ in
the table header) of interfaces are abbreviated as:

PX API Proxy

SE API Service Element

SO SLE Operations

SU SLE Utilities

SA SLE Application

CCSDS 914.0-M-1 Page G-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The applicability of interfaces is indicated in a separate column (marked ‘A’ in the table
header) as:

Mandatory (M) if the interface must be supported or used by all implementations.

Conditional (C) if the interface is associated with a set of options from which an
implementation can select or depends on the service type supported by the
component.

Optional (O) if the interface is needed for one of the other options specified in annex E.

An additional column (marked ‘N’ in the table header) references one or several notes, which
are listed below the table.

The information in this annex has been derived from the specifications in section 3 and
annexes A and E. It does not provide any new specifications. In case of any discrepancies
between this annex and the specifications in section 3 and annexes A and E the latter shall
apply.

G2 API PROXY

G2.1 EXPORTED INTERFACES

Interface Clients A N

ISLE_ProxyAdmin SA and SE M 1

ISLE_AssocFactory SE C 2

ISLE_SrvProxyInitiate SE (service instance) M 3

ISLE_Concurrent SE C

ISLE_Sequential SE C

ISLE_TimeoutProcessor SA or SE C 4

ISLE_EventProcessor SA or SE C 4

ISLE_TraceControl SE O 5

NOTES

1 The interface is used by the application for configuration of the component and by the
service element for dynamic port registration if the service element supports
responding associations.

2 The interface is required when the proxy supports associations in the initiator role.

3 The interface must be supported by every association object.

CCSDS 914.0-M-1 Page G-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4 The interface is only required in combination with ISLE_Sequential. The client
is the supplier of the corresponding interface ISLE_TimerHandler or
ISLE_EventMonitor.

5 If tracing is supported, then the interface must be supported by the API Proxy and by
every association object.

G2.2 REQUIRED INTERFACES

Interface Interface reference obtained by S A N

ISLE_Locator input argument to
ISLE_ProxyAdmin::Configure().

SE SA C 1

ISLE_OperationFacto
ry

input argument to
ISLE_ProxyAdmin::Configure().

SO SA M 2

ISLE_UtilFactory input argument to
ISLE_ProxyAdmin::Configure().

SU SA M 3

ISLE_Reporter input argument to
ISLE_ProxyAdmin::Configure().

SA M

ISLE_SrvProxyInform a) input argument to
ISLE_AssocFactory::CreateAssociation();
b) output argument of
ISLE_Locator::LocateInstance().

SE SA M 4

ISLE_EventMonitor input argument to
ISLE_Sequential::StartSequential().

SE SA C 5

ISLE_TimerHandler input argument to
ISLE_Sequential::StartSequential().

SE SA C 5

ISLE_Trace input argument to
ISLE_TraceControl::StartTrace().

SA O

interfaces of operation
objects

a) input argument of one of the methods in
ISLE_SrvProxyInitiate;
b) call to ISLE_OperationFactory.

SE SO M 6

interfaces of utility objects a) passed by methods of other interfaces;
b) call to ISLE_UtilFactory.

 M 7

NOTES

1 The interface is passed by the application but is actually supplied by the component
API Service Element.

2 The interface is passed by the application but is actually supplied by the component
SLE Operations.

CCSDS 914.0-M-1 Page G-3 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3 The interface is passed by the application but is actually supplied by the component
SLE Utilities.

4 Method a) applies to associations in the initiator role and method b) to associations in
the responder role.

5 The interface is only needed in combination with ISLE_Sequential.

6 Operation objects might be passed by the service element; they are actually
implemented by the component SLE Operations.

7 Utility objects can be passed to the proxy by various methods; they are implemented
by the component SLE Utilities.

CCSDS 914.0-M-1 Page G-4 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

G3 API SERVICE ELEMENT

G3.1 EXPORTED INTERFACES

Interface Clients A N

ISLE_SEAdmin SA M

ISLE_SIFactory SA M

ISLE_SIAdmin SA M 1

I<SRV>_SIAdmin SA C 2

I<SRV>_SIUpdate SA C 2

ISLE_SIOpFactory SA M 1

ISLE_ServiceInitiate SA M 1

ISLE_Locator SA and PX C 3

ISLE_SrvProxyInform PX (association) M 1

ISLE_Concurrent SA C

ISLE_Sequential SA C

ISLE_TimeoutProcessor SA C 4

ISLE_EventProcessor SA C 4

ISLE_TraceControl SA O 5

NOTES

1 The interface is supported for every service instance.

2 The interface is supported for service instances in the provider role, if the interface is
defined for the service type supported by that service instance.

3 The interface must be supported by a service element that uses associations in the
responder role. The application requires the interface reference only for configuration
of the component API Proxy; it does not use any of the methods in the interface.

4 The interface is only required in combination with ISLE_Sequential.

5 The interface must be supported by the API Service Element and by every service
instance object.

CCSDS 914.0-M-1 Page G-5 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

G3.2 REQUIRED INTERFACES

Interface Interface reference obtained by S A N

ISLE_ProxyAdmin input argument to ISLE_SEAdmin::AddProxy() PX SA M 1

ISLE_OperationFacto
ry

input argument to ISLE_SEAdmin::Configure() SO SA M 2

ISLE_UtilFactory input argument to ISLE_SEAdmin::Configure() SU SA M 3

ISLE_Reporter input argument to ISLE_SEAdmin::Configure() SA M

ISLE_ServiceInform input argument to
ISLE_SIFactory::CreateServiceInstance()

SA M

ISLE_AssocFactory call to ISLE_ProxyAdmin::QueryInterface() PX M 4

ISLE_SrvProxyInitia
te

a) output argument of
ISLE_AssocFactory::CreateAssociation()

b) input argument to
ISLE_Locator::LocateInstance()

PX M 5

ISLE_EventMonitor input argument to
ISLE_Sequential::StartSequential()

SA C 8

ISLE_TimerHandler input argument to
ISLE_Sequential::StartSequential()

SA C 8

ISLE_Trace input argument to
ISLE_TraceControl::StartTrace()

SA O

ISLE_Concurrent call to ISLE_ProxyAdmin::QueryInterface() PX C 4 6

ISLE_Sequential call to ISLE_ProxyAdmin::QueryInterface() PX C 4 6

ISLE_TraceControl a) call to
ISLE_ProxyAdmin::QueryInterface()

b) call to
ISLE_SrvProxyInitiate::QueryInterface()

PX O 4 7

interfaces of operation
objects

a) input argument of one of the methods in
ISLE_SrvProxyInform;
b) input argument to
ISLE_Locator::LocateInstance();
c) input argument of one of the methods in
ISLE_ServiceInitiate;
d) call to ISLE_OperationFactory.

PX SA
SO

M 9

interfaces of utility objects a) passed by methods of other interfaces;
b) call to ISLE_UtilFactory.

 M 10

CCSDS 914.0-M-1 Page G-6 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTES

1 The interface is passed by the application but is actually supplied by the component
API Proxy.

2 The interface is passed by the application but is actually supplied by the component
SLE Operations.

3 The interface is passed by the application but is actually supplied by the component
SLE Utilities.

4 The interface can also be obtained by a call to QueryInterface() on any other
interface exported by the same component object.

5 Method a) is used for associations in the initiator role; method b) applies to
associations in the responder role.

6 The interface is needed for control of the proxies linked to the service element.

7 The interface is needed to forward trace requests to the proxies linked to the service
element. An interface is required for the API Proxy (method a)) and for every
association to support tracing of individual service instances (method b)).

8 The interface is only needed in combination with ISLE_Sequential.

9 Operation objects might be passed by the application or the proxy; they are actually
implemented by the component SLE Operations.

10 Utility objects can be passed to the service element by various methods; they are
implemented by the component SLE Utilities.

CCSDS 914.0-M-1 Page G-7 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

G4 SLE OPERATIONS

G4.1 EXPORTED INTERFACES

Interface Clients A N

ISLE_OperationFactory SE and PX M

interfaces of operation objects SA, SE and PX M

G4.2 REQUIRED INTERFACES

Interface Interface reference obtained by S A N

ISLE_UtilFactory input argument to the bootstrap creator function
<impl-id>_CreateOperationFactory()

SA SU M 1

ISLE_Reporter optional input argument to the bootstrap creator
function <impl-id>_CreateOperationFactory

SA O 2

interfaces of utility objects call to ISLE_UtilFactory SU M

NOTES

1 The interface is passed by the application but is actually supplied by the component
SLE Utilities.

2 Supply of the interface by the application is optional; i.e., the corresponding argument
can be set to NULL. If supplied, implementation may use the interface to report
errors and inconsistencies in the attributes of operation objects.

G5 SLE UTILITIES

G5.1 EXPORTED INTERFACES

Interface Clients A N

ISLE_UtilFactory SA, SE, PX and SO M

interfaces of utility objects SA, SE, PX and SO M

G5.2 REQUIRED INTERFACES

Interface Interface reference obtained by S A N

ISLE_TimeSource input argument to the bootstrap creator function
<impl-id>_CreateUtilFactory()

SA O

CCSDS 914.0-M-1 Page G-8 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

G6 SLE APPLICATION

G6.1 EXPORTED INTERFACES

Interface Clients A N

ISLE_ServiceInform SE M

ISLE_Reporter SE and PX M

ISLE_TimerHandler SE and PX C 1

ISLE_EventMonitor SE and PX C 1

ISLE_Trace SE and PX O 2

ISLE_TimeSource SU O

NOTES

1 The interface is required only in combination with ISLE_Sequential. It is
passed to the API Proxy via the API Service Element, if the interface between these
two components is also sequential.

2 The interface is passed to the API Proxy via the API Service Element.

CCSDS 914.0-M-1 Page G-9 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

G6.2 REQUIRED INTERFACES

Interface Interface reference obtained by S A N

ISLE_ProxyAdmin call to the bootstrap creator function
<impl-id>_CreateProxy().

PX M 1

ISLE_SEAdmin call to the bootstrap creator function
<impl-id>_CreateServiceElement().

SE M 1

ISLE_Locator call to ISLE_SEAdmin::QueryInterface(). SE C 2 3

ISLE_OperationFactory call to the bootstrap creator function
<impl-id>_CreateOperationFactory().

SO M 1 4

ISLE_UtilFactory call to the bootstrap creator function
<impl-id>_CreateUtilFactory().

SU M 1

ISLE_SIFactory call to ISLE_SEAdmin::QueryInterface(). SE M 3

ISLE_SIAdmin call to
ISLE_SIFactory::CreateServiceInstance().

SE M 5

I<SRV>_SIAdmin call to ISLE_SIAdmin::QueryInterface(). SE C 6

I<SRV>_SIUpdate call to ISLE_SIAdmin::QueryInterface(). SE C 6

ISLE_SIOpFactory call to ISLE_SIAdmin::QueryInterface(). SE M 6

ISLE_ServiceInitiate call to ISLE_SIAdmin::QueryInterface(). SE M 6

ISLE_Concurrent call to ISLE_SEAdmin::QueryInterface(). SE C 3

ISLE_Sequential call to ISLE_SEAdmin::QueryInterface(). SE C 3

ISLE_TimeoutProcessor input argument to
ISLE_TimerHandler::StartTimer().

SE C 7

ISLE_EventProcessor input argument to
ISLE_EventMonitor::AddEvent().

SE C 7

ISLE_TraceControl a) call to ISLE_SEAdmin::QueryInterface();
b) call to ISLE_SIAdmin::QueryInterface().

SE O 3 8

interfaces of operation
objects

a) input argument of one of the methods in
ISLE_ServiceInitiate;
b) call to
ISLE_SIOpFactory::CreateOperation().

SE
SO

M 9

interfaces of utility objects a) passed by methods of other interfaces;
b) call to ISLE_UtilFactory.

 M 10

CCSDS 914.0-M-1 Page G-10 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page G-11 October 2008

NOTES

1 The application could also request the creator function to return a different interface
(e.g., IUnknown) and then use QueryInterface() to retrieve this interface.

2 The application needs this interface only for configuration of the API Proxy; it does
not use any of its methods.

3 QueryInterface() can also be called on any other interface exported by the
same component object.

4 The application needs this interface for configuration of the API Proxy and the API
Service Element. Applications should use the interface ISLE_SIOpFactory to
create operation objects.

5 The application could also request the method CreateServiceInstance() to
return any other interface of a service instance and obtain ISLE_SIAdmin by
calling QueryInterface() on that interface.

6 The interface could also be obtained by a call to QueryInterface() on any other
interface of the service instance or by the call to ISLE_SIOpFactory (instead of
requesting ISLE_SIAdmin).

7 The interface is only required in combination with ISLE_Sequential.

8 Method a) is used to control traces for the complete API; method b) provides an
interface to control tracing for an individual service instance.

9 An application obtains operation objects from the service instance in the API Service
Element; they are actually implemented by the component SLE Operations.

10 Utility objects can be passed to the service element by various methods; they are
implemented by the component SLE Utilities.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX H

INDEX TO DEFINITIONS

(Informative)

This annex provides an index to the terminology defined in the references.

Term Reference

(data) type reference [15]

(data) value reference [15]

abstract binding reference [3]

abstract object reference [3]

abstract port reference [3]

abstract service reference [3]

Abstract Syntax Notation One (ASN.1) reference [15]

active (state) 4

association references [4], [5], [6], [7], and
[8]

bound (state) 4

client 1.6.1.4.5

communications service references [4], [5], [6], [7], and
[8]

complete (online delivery mode) references [4], [5] and [6]

component 1.6.1.4.2

confirmed operation references [4], [5], [6], [7], and
[8]

flow control 2.3.3.4.2.2 and 2.3.3.4.2.3

initiator reference [19]

interface 1.6.1.4.6

invocation references [4], [5], [6], [7], and
[8]

invoker reference [3]

latency limit references [4], [5] and [6]

object identifier reference [15]

CCSDS 914.0-M-1 Page H-1 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Term Reference

offline delivery mode reference [3]

offline frame buffer references [4], [5] and [6]

online delivery mode reference [3]

online frame buffer references [4], [5] and [6]

operation reference [3]

parameter references [4], [5], [6], [7], and
[8]

performance references [4], [5], [6], [7], and
[8]

performer reference [3]

physical channel reference [3]

port identifier references [4], [5], [6], [7], and
[8]

provider-initiated references [4], [5] and [6]

relative distinguished name (RDN) reference [17]

release timer references [4], [5] and [6]

responder reference [19]

return (of an operation) references [4], [5], [6], [7], and
[8]

return data reference [3]

service agreement reference [3]

service instance provision period references [4], [5], [6], [7], and
[8]

service provider (provider) reference [3]

service user (user) reference [3]

SLE Complex reference [3]

SLE Complex Management reference [3]

SLE data channel reference [3]

SLE functional group (SLE-FG) reference [3]

SLE protocol data unit (SLE-PDU) reference [3]

SLE service data unit (SLE-SDU) reference [3]

SLE service package reference [3]

CCSDS 914.0-M-1 Page H-2 October 2008

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page H-3 October 2008

Term Reference

SLE System reference [3]

SLE transfer service instance reference [3]

SLE transfer service production reference [3]

SLE transfer service provision reference [3]

SLE Utilization Management reference [3]

space link reference [3]

space link data channel reference [3]

space link data unit (SL-DU) reference [3]

space link session reference [3]

telemetry frame references [4], [5] and [6]

timely (online delivery mode) references [4], [5] and [6]

transfer buffer references [4], [5] and [6]

transfer frame reference [3]

unbound (state) 4

unconfirmed operation references [4], [5], [6], [7], and
[8]

user-initiated references [4], [5] and [6]

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page I-1 October 2008

ANNEX I

ACRONYMS AND ABBREVIATIONS

(Informative)

This annex expands the acronyms used throughout this Recommended Practice.

AIF Application Interface
API Application Program Interface
CCSDS Consultative Committee for Space Data Systems
CIF Client Interface
CLTU Command Link Transmission Unit
COM Component Object Model
FSP Forward Space Packet
GUID Globally Unique Identifier
ID Identifier
IEC International Electrotechnical Commission
IID Interface Identifier
ISO International Organization for Standardization
MIF Management Interface
NIF Network Interface
OCL Object Constraint Language
OMG Object Management Group
PDU Protocol Data Unit
PIF Proxy Interface
RAF Return All Frames
RCF Return Channel Frames
ROCF Return Operational Control Field
SHA Secure Hash Algorithm
SI Service Instance
SII Service Instance Identifier
SLE Space Link Extension
SRV Service
UML Unified Modeling Language
UTC Coordinated Universal Time

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CCSDS 914.0-M-1 Page J-1 October 2008

ANNEX J

INFORMATIVE REFERENCES

(Informative)

[J1] Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS
A00.0-Y-9. Yellow Book. Issue 9. Washington, D.C.: CCSDS, November 2003.

[J2] Space Communication Cross Support—Service Management—Service Specification.
Draft Recommendation for Space Data System Standards, CCSDS 910.11-R-3. Red
Book. Issue 3. Washington, D.C.: CCSDS, October 2008.

[J3] Space Link Extension—Application Program Interface for Transfer Services—
Summary of Concept and Rationale. Report Concerning Space Data System Standards,
CCSDS 914.1-G-1. Green Book. Issue 1. Washington, D.C.: CCSDS, January 2006.

[J4] Space Link Extension—Application Program Interface for Transfer Services—
Application Programmer’s Guide. Report Concerning Space Data System Standards,
CCSDS 914.2-G-2. Green Book. Issue 2. Washington, D.C.: CCSDS, October 2008.

[J5] The COM/DCOM Reference. COM/DCOM Product Documentation, AX-01. San
Francisco: The Open Group, 1999.
<http://www.opengroup.org/products/publications/catalog/ax01.htm>

[J6] Unified Modeling Language (UML). Version 1.5, formal/2003-03-01. Needham, MA:
Object Management Group, March 2003.
<http://www.omg.org/technology/documents/modeling_spec_catalog.htm>

[J7] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 2nd ed., Reading, MA: Addison-Wesley, 1999.

[J8] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language
User Guide. Reading, MA: Addison-Wesley, 1999.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

	AUTHORITY
	STATEMENT OF INTENT
	FOREWORD
	DOCUMENT CONTROL
	CONTENTS
	1 INTRODUCTION
	1.1 PURPOSE OF THIS RECOMMENDED PRACTICE
	1.2 SCOPE
	1.3 APPLICABILITY
	1.4 RATIONALE
	1.5 DOCUMENT STRUCTURE
	1.6 DEFINITIONS
	1.7 REFERENCES

	2 DESCRIPTION OF THE SLE API
	2.1 INTRODUCTION
	2.2 SPECIFICATION METHOD AND NOTATION
	2.3 LOGICAL VIEW
	2.4 SECURITY ASPECTS OF CORE SLE API CAPABILITIES

	3 SPECIFICATION OF API COMPONENTS
	3.1 INTRODUCTION
	3.2 API PROXY
	3.3 API SERVICE ELEMENT
	3.4 SLE OPERATIONS
	3.5 SLE UTILITIES
	3.6 SLE APPLICATION
	3.7 HANDLING OF IN PROCESS THREADS AND EXTERNAL EVENTS

	4 STATE TABLES
	4.1 INTRODUCTION
	4.2 NOTATION
	4.3 GENERAL ERROR HANDLING CONVENTIONS
	4.4 STATE TABLE FOR ASSOCIATIONS
	4.5 STATE TABLES FOR SERVICE INSTANCES

	ANNEX A SPECIFICATION OF COMMON INTERFACES(Normative)
	ANNEX B RESULT CODES(Normative)
	ANNEX C STRUCTURE OF THE SERVICE INSTANCE IDENTIFIER FOR VERSION 1 OF THE SLE SERVICES RAF, RCF, AND CLTU(Normative)
	ANNEX D SIMPLE COMPONENT MODEL(Normative)
	ANNEX E CONFORMANCE(Normative)
	ANNEX F INTERACTION OF COMPONENTS(Informative)
	ANNEX G INTERFACE CROSS REFERENCE(Informative)
	ANNEX H INDEX TO DEFINITIONS(Informative)
	ANNEX I ACRONYMS AND ABBREVIATIONS(Informative)
	ANNEX J INFORMATIVE REFERENCES(Informative)

